Rice is one of the most important grain crops in Northeast China (NEC) and its cultivation is sensitive to climate change. This study aimed to explore the spatio-temporal changes in the NEC rice planting area over t...Rice is one of the most important grain crops in Northeast China (NEC) and its cultivation is sensitive to climate change. This study aimed to explore the spatio-temporal changes in the NEC rice planting area over the period of 1980-2010 and to analyze their relationship to climate change. To do so, the CLUE-S (conversion of land use and its effects at small region extent) model was ifrst updated and used to simulate dynamic changes in the rice planting area in NEC to understand spatio-temporal change trends during three periods: 1980-1990, 1990-2000 and 2000-2010. The changing results in individual periods were then linked to climatic variables to investigate the climatic drivers of these changes. Results showed that the NEC rice planting area expanded quickly and increased by nearly 4.5 times during 1980-2010. The concentration of newly planted rice areas in NEC constantly moved northward and the changes were strongly dependent on latitude. This conifrmed that climate change, increases in temperature in particular, greatly inlfuenced the shift in the rice planting area. The shift in the north limit of the NEC rice planting area generally followed a 1°C isoline migration pattern, but with an obvious time-lag effect. These ifndings can help policy makers and crop producers take proper adaptation measures even when exposed to the global warming situation in NEC.展开更多
The North China Plain is one of the most water-stressed areas in China. Irrigation of winter wheat mainly utilizes groundwater resources, which has resulted in severe environmental problems. Accurate estimation of cro...The North China Plain is one of the most water-stressed areas in China. Irrigation of winter wheat mainly utilizes groundwater resources, which has resulted in severe environmental problems. Accurate estimation of crop water consumption and net irrigation water consumption is crucial to guarantee the management of agricultural water resources. An actual crop evapotranspiration(ET) estimation model was proposed, by combining FAO Penman-Monteith method with remote sensing data. The planting area of winter wheat has a significant impact on water consumption; therefore, the planting area was also retrieved. The estimated ET showed good agreement with field-observed ET at four stations. The average relative bias and root mean square error(RMSE) for ET estimation were –2.2% and 25.5 mm, respectively. The results showed the planting area and water consumption of winter wheat had a decreasing trend in the Northern Hebei Plain(N-HBP) and Southern Hebei Plain(S-HBP). Moreover, in these two regions, there was a significant negative correlation between accumulated net irrigation water consumption and groundwater table. The total net irrigation water consumption in the N-HBP and S-HBP accounted for 12.9×10~9 m^3 and 31.9×10~9 m^3 during 2001–2016, respectively. Before and after 2001, the decline rate of groundwater table had a decreasing trend, as did the planting area of winter wheat in the N-HBP and S-HBP. The decrease of winter wheat planting area alleviated the decline of groundwater table in these two regions while the total net irrigation water consumption was both up to 28.5×10~9 m^3 during 2001–2016 in the Northwestern Shandong Plain(NW-SDP) and Northern Henan Plain(N-HNP). In these two regions, there was no significant correlation between accumulated net irrigation water consumption and groundwater table. The Yellow River was able to supply irrigation and the groundwater table had no significant declining trend.展开更多
基金supported and financed by the National Basic Research Program of China(973 Program,2010CB951504)the National Natural Science Foundation of China(41201089 and 41271112)
文摘Rice is one of the most important grain crops in Northeast China (NEC) and its cultivation is sensitive to climate change. This study aimed to explore the spatio-temporal changes in the NEC rice planting area over the period of 1980-2010 and to analyze their relationship to climate change. To do so, the CLUE-S (conversion of land use and its effects at small region extent) model was ifrst updated and used to simulate dynamic changes in the rice planting area in NEC to understand spatio-temporal change trends during three periods: 1980-1990, 1990-2000 and 2000-2010. The changing results in individual periods were then linked to climatic variables to investigate the climatic drivers of these changes. Results showed that the NEC rice planting area expanded quickly and increased by nearly 4.5 times during 1980-2010. The concentration of newly planted rice areas in NEC constantly moved northward and the changes were strongly dependent on latitude. This conifrmed that climate change, increases in temperature in particular, greatly inlfuenced the shift in the rice planting area. The shift in the north limit of the NEC rice planting area generally followed a 1°C isoline migration pattern, but with an obvious time-lag effect. These ifndings can help policy makers and crop producers take proper adaptation measures even when exposed to the global warming situation in NEC.
基金National Natural Science Foundation of China,No.41471027National Key Research and Development Plan,No.2016YFC0401403
文摘The North China Plain is one of the most water-stressed areas in China. Irrigation of winter wheat mainly utilizes groundwater resources, which has resulted in severe environmental problems. Accurate estimation of crop water consumption and net irrigation water consumption is crucial to guarantee the management of agricultural water resources. An actual crop evapotranspiration(ET) estimation model was proposed, by combining FAO Penman-Monteith method with remote sensing data. The planting area of winter wheat has a significant impact on water consumption; therefore, the planting area was also retrieved. The estimated ET showed good agreement with field-observed ET at four stations. The average relative bias and root mean square error(RMSE) for ET estimation were –2.2% and 25.5 mm, respectively. The results showed the planting area and water consumption of winter wheat had a decreasing trend in the Northern Hebei Plain(N-HBP) and Southern Hebei Plain(S-HBP). Moreover, in these two regions, there was a significant negative correlation between accumulated net irrigation water consumption and groundwater table. The total net irrigation water consumption in the N-HBP and S-HBP accounted for 12.9×10~9 m^3 and 31.9×10~9 m^3 during 2001–2016, respectively. Before and after 2001, the decline rate of groundwater table had a decreasing trend, as did the planting area of winter wheat in the N-HBP and S-HBP. The decrease of winter wheat planting area alleviated the decline of groundwater table in these two regions while the total net irrigation water consumption was both up to 28.5×10~9 m^3 during 2001–2016 in the Northwestern Shandong Plain(NW-SDP) and Northern Henan Plain(N-HNP). In these two regions, there was no significant correlation between accumulated net irrigation water consumption and groundwater table. The Yellow River was able to supply irrigation and the groundwater table had no significant declining trend.