期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Integrated Use of Herbicide and Crop Mulch in Suppressing Weed Growth in a Dry-Seeded Rice System 被引量:2
1
作者 Bhagirath Singh Chauhan Seth Bernard Abugho 《American Journal of Plant Sciences》 2013年第8期1611-1616,共6页
Dry-seeded rice production systems are increasing in many Asian countries because of labor and water scarcities. However, weeds are the main biological constraints in these systems. Herbicides are widely used to manag... Dry-seeded rice production systems are increasing in many Asian countries because of labor and water scarcities. However, weeds are the main biological constraints in these systems. Herbicides are widely used to manage weeds but they do not provide effective weed control. The use of crop residue as mulch can suppress weed emergence and weed biomass but mulch alone does not provide effective weed control. The integrated use of herbicide and mulch, however, could provide more effective and sustainable weed control in dry-seeded rice systems. A study was conducted in two consecutive rice growing seasons to evaluate the combined effect of herbicide (treated and nontreated) and rice straw mulch (0, 2, and 4 t.ha-1) on weed growth and rice yield in a dry-seeded rice system. In the nontreated plots, weed biomass decreased with increases in mulch amounts, whereas weed biomass in the herbicide-treated plots was similar at different mulch amounts. Overall, herbicide treatments provided better weed control than the mulch treatments. In the nontreated plots, grain yield was similar at different mulch amounts, whereas grain yield in the herbicide-treated plots was greater when the field was mulched with 4 t.ha-1 of rice straw than with no mulch or mulched with only 2 t.ha-1 of rice straw. The results suggest that integrated use of mulch and herbicides can help weed control and increase crop yield in dry-seeded rice. 展开更多
关键词 Grain Yield Integrated Weed Management rice Residue Weed Biomass
下载PDF
Evaluation of Porous Structure of Cement Pastes Made with Residual Rice Husk Ash
2
作者 Joao Henrique da Silva Rego Antonio Alberto Nepomucenol +1 位作者 Enio Pazini Figueiredo Nicole Pagan Hasparyk 《Journal of Civil Engineering and Architecture》 2014年第11期1396-1402,共7页
In several countries, the residual RHA (rice husk ash) has been produced in rice processing industries or in thermoelectric plants that use rice husk to generate heat and/or electrical energy, usually without burnin... In several countries, the residual RHA (rice husk ash) has been produced in rice processing industries or in thermoelectric plants that use rice husk to generate heat and/or electrical energy, usually without burning process control. This causes a reduction in the amorphous silica content of residual RHA, which distinguishes them from the RHA produced according to controlled burning process, which is totally amorphous and considered a highly reactive pozzolan. In this paper, the hydration products and the porous structure of binders paste were studied by replacing, in weight of 5%, 10% and 20% of Portland cement OPC (ordinary Portland cement), by residual RHAs named A and B, which have high and low content of amorphous silica, respectively, using microstructure evaluation techniques as XRD (X-ray diffraction), TG (thermogravimetric) tests and MIP (mercury intrusion porosimetry). A reducing the size of the pores of the pastes was observed according to the increase of content replacement of RHA A and RHA B. 展开更多
关键词 Mineral addition residual rice husk ash pozzolanic activity porous structure microstructure.
下载PDF
Ice-phobic properties of MoS_(2)-loaded rice straw biogas residue biochar-based photothermal and anti-corrosion coating with low oxygen to carbon ratio
3
作者 Zhiyuan Liu Yan Li Zhiyuan He 《Biochar》 SCIE CAS CSCD 2023年第1期1273-1287,共15页
Icing of wind turbine blades will seriously hinder the development of the wind power industry,and the use of biomass resources to solve the icing problem is conducive to promoting the synergistic development of biomas... Icing of wind turbine blades will seriously hinder the development of the wind power industry,and the use of biomass resources to solve the icing problem is conducive to promoting the synergistic development of biomass and wind energy.In this study,ice-phobic coatings with photothermal and anti-corrosion properties were prepared by surface modification pyrolysis and hydrothermal reaction with rice straw biogas residue as raw material.The erosion of KOH and the surface modification of MoS_(2) produced a rough structure of the material,and the high-temperature pyrolysis and hydrothermal reaction promoted the dehydrogenation and decarboxylation reactions,which reduced the number of oxygen-containing functional groups and decreased the surface energy of the material.The ice-phobic coating has superhydrophobic properties with a contact angle of 158.32°.Due to the small surface area in contact with water,the coating was able to significantly reduce the icing adhesion strength to 53.23 kPa.The icing wind tunnel test results showed that the icing area and mass were reduced by 10.54%and 30.08%,respectively,when the wind speed was 10 m s^(−1) and the temperature was−10°C.Photothermal performance tests showed that the MoS_(2)-loaded material had light absorption properties,and the coating could rapidly warm up to 58.3℃under xenon lamp irradiation with photothermal cycle stability.The loading of MoS_(2) acts as a physical barrier,reducing the contact of corrosive media with the substrate,thus improving the anti-corrosion of the coating.This study has practical application value and significance for the development of the anti-icing field under complex environmental conditions. 展开更多
关键词 Wind turbine blades Ice-phobic coating rice straw biogas residue biochar Icing wind tunnel tests
原文传递
Fate of Basal N Under Split Fertilization in Rice with ^(15)N Isotope Tracer 被引量:11
4
作者 LI Ganghua LIN Jingjing +3 位作者 XUE Lihong DING Yanfeng WANG Shaohua YANG Linzhang 《Pedosphere》 SCIE CAS CSCD 2018年第1期135-143,共9页
Split fertilization strategy is popularly adopted in rice to synchronize soil nitrogen(N) supply and crop N demand. Attention has been paid more on mid-season topdressing N, but limited on basal N. A clearer understan... Split fertilization strategy is popularly adopted in rice to synchronize soil nitrogen(N) supply and crop N demand. Attention has been paid more on mid-season topdressing N, but limited on basal N. A clearer understanding of the basal N fate under split fertilization is crucial for determining rational basal N split ratio to improve the yield and reduce the loss to environment. A two-year field experiment with two N rates of 150 and 300 kg Nha^(-1), two split ratios of basal N, 40% and 25%, and two rice varieties,Wuyunjing 23(japonica) and Y-liangyou 2(super hybrid indica), was conducted. Labelled ^(15) N urea was supplied in micro-plots as basal fertilizer to determine the plant uptake, translocation, soil residual, and loss of basal N fertilizer. The results showed that basal N absorbed by rice was only 1.6%–11.5% before tillering fertilization(8–10 d after transplanting), 6.5%–21.4% from tillering fertilization to panicle fertilization, and little(0.1%–4.4%) after panicle fertilization. The recovery efficiency of basal N for the entire rice growth stage was low and ranged from 18.7% to 24.8%, not significantly affected by cultivars or N treatments. Soil residual basal N accounted for 10.3%–36.4% and decreased with increasing total N rate and basal N ratio, regardless of variety and year. 43.8%–70.4% of basal N was lost into the environment based on the N balance. Basal N loss was significantly linearly positive related with the basal N rate and obviously enhanced by the increasing basal N ratio for both varieties in both 2012 and 2013. The N use efficiency and yield was significantly improved when decreasing the basal N ratio from 40% to 25%. The results indicated that the basal N ratio should be reduced, especially with limited N inputs, to improve the yield and reduce the N loss to the environment. 展开更多
关键词 N balance N loss N split ratio N use efficiency plant uptake rice variety soil residual N yield
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部