Rice stripe mosaic virus(RSMV) is a rhabdovirus recently found in southern part of China and can cause severe reduction in rice production. To establish serological methods for RSMV epidemiological studies and to esta...Rice stripe mosaic virus(RSMV) is a rhabdovirus recently found in southern part of China and can cause severe reduction in rice production. To establish serological methods for RSMV epidemiological studies and to establish a control strategy for this virus, we first purified RSMV virions from infected rice plants and then used them as an immunogen to produce four RSMV-specific monoclonal antibodies(MAbs)(i.e.,1D4, 4A8, 8E4 and 11F11). With these MAbs, we have developed a highly specific and sensitive antigen-coated plate enzyme-linked immunosorbent assay(ACP-ELISA), a Dot-ELISA and a Tissue print-ELISA for rapid detections of RSMV infection in rice plants or in leafhoppers. Our results showed that RSMV can be readily detected in RSMV-infected rice plant tissue crude extracts diluted at 1:20,971,520(w/v, g/m L)through ACP-ELISA or diluted at 1:327,680(w/v, g/m L) through Dot-ELISA. Both ACP-ELISA and Dot-ELISA can also be used to detect RSMV infection in individual RSMV viruliferous leafhopper(Recilia dorsalis) homogenate diluted at 1:307,200 and 1:163,840(individual leafhopper/l L), respectively. Detection of RSMV infection in field-collected rice samples or in RSMV viruliferous leafhoppers indicated that the three serological methods can produce same results with that produced by RT-PCR(19 of the 33 rice samples and 5 of the 16 leafhoppers were RSMV-positive). We consider that the four MAbs produced in this study are very specific and sensitive, and the three new serological methods are very useful for detections of RSMV infection in rice plants or in leafhoppers and the establishment of the disease control strategies.展开更多
Both viruses and host cells compete for intracellular polyamines for efficient propagation.Currently,how the key polyamine-metabolizing enzymes,including ornithine decarboxylase 1(ODC1)and its antizyme 1(OAZ1),are act...Both viruses and host cells compete for intracellular polyamines for efficient propagation.Currently,how the key polyamine-metabolizing enzymes,including ornithine decarboxylase 1(ODC1)and its antizyme 1(OAZ1),are activated to co-ordinate viral propagation and polyamine biosynthesis remains unknown.Here,we report that the matrix protein of rice stripe mosaic virus(RSMV),a cytorhabdovirus,directly hijacks OAZ1 to ensure the proper assembly of rigid bacilliform non-enveloped virions in leafhopper vector.Viral matrix protein effectively competes with ODC1 to bind to OAZ1,and thus,the ability of OAZ1 to target and mediate the degradation of ODC1 is significantly inhibited during viral propagation,which finally promotes polyamines production.Thus,OAZ1 and ODC1 are activated to synergistically promote viral persistent propagation and polyamine biosynthesis in viruliferous vectors.Our data suggest that it is a novel mechanism for rhabdovirus to exploit OAZ1 for facilitating viral assembly.展开更多
基金Project was supported by the Ministry of Agriculture of China(No.2016ZX08009003-001)the National Key Research and Development Program of China(No.2016YFD0300706)+1 种基金the National Natural Science Foundation of China(No.31571976)the Earmarked Fund for China Agriculture Research System(No.nycytx-001).
文摘Rice stripe mosaic virus(RSMV) is a rhabdovirus recently found in southern part of China and can cause severe reduction in rice production. To establish serological methods for RSMV epidemiological studies and to establish a control strategy for this virus, we first purified RSMV virions from infected rice plants and then used them as an immunogen to produce four RSMV-specific monoclonal antibodies(MAbs)(i.e.,1D4, 4A8, 8E4 and 11F11). With these MAbs, we have developed a highly specific and sensitive antigen-coated plate enzyme-linked immunosorbent assay(ACP-ELISA), a Dot-ELISA and a Tissue print-ELISA for rapid detections of RSMV infection in rice plants or in leafhoppers. Our results showed that RSMV can be readily detected in RSMV-infected rice plant tissue crude extracts diluted at 1:20,971,520(w/v, g/m L)through ACP-ELISA or diluted at 1:327,680(w/v, g/m L) through Dot-ELISA. Both ACP-ELISA and Dot-ELISA can also be used to detect RSMV infection in individual RSMV viruliferous leafhopper(Recilia dorsalis) homogenate diluted at 1:307,200 and 1:163,840(individual leafhopper/l L), respectively. Detection of RSMV infection in field-collected rice samples or in RSMV viruliferous leafhoppers indicated that the three serological methods can produce same results with that produced by RT-PCR(19 of the 33 rice samples and 5 of the 16 leafhoppers were RSMV-positive). We consider that the four MAbs produced in this study are very specific and sensitive, and the three new serological methods are very useful for detections of RSMV infection in rice plants or in leafhoppers and the establishment of the disease control strategies.
基金supported by funds from the National Natural Science Foundation of China to Taiyun Wei under grant number 31920103014the National Natural Science Foundation of China to Dongsheng Jia under grant number 31970160+1 种基金the National Natural Science Foundation of China to Xiaofeng Zhang under grant number 31871931the Natural Science Foundation of Fujian Province to Dongsheng Jia under grant number 2020 J06015.
文摘Both viruses and host cells compete for intracellular polyamines for efficient propagation.Currently,how the key polyamine-metabolizing enzymes,including ornithine decarboxylase 1(ODC1)and its antizyme 1(OAZ1),are activated to co-ordinate viral propagation and polyamine biosynthesis remains unknown.Here,we report that the matrix protein of rice stripe mosaic virus(RSMV),a cytorhabdovirus,directly hijacks OAZ1 to ensure the proper assembly of rigid bacilliform non-enveloped virions in leafhopper vector.Viral matrix protein effectively competes with ODC1 to bind to OAZ1,and thus,the ability of OAZ1 to target and mediate the degradation of ODC1 is significantly inhibited during viral propagation,which finally promotes polyamines production.Thus,OAZ1 and ODC1 are activated to synergistically promote viral persistent propagation and polyamine biosynthesis in viruliferous vectors.Our data suggest that it is a novel mechanism for rhabdovirus to exploit OAZ1 for facilitating viral assembly.