Nitrogen(N)significantly affects rice yield and lodging resistance.Previous studies have primarily investigated the impact of N management on rice lodging in conventional rice monoculture(RM);however,few studies have ...Nitrogen(N)significantly affects rice yield and lodging resistance.Previous studies have primarily investigated the impact of N management on rice lodging in conventional rice monoculture(RM);however,few studies have performed such investigations in rice-crayfish coculture(RC).We hypothesized that RC would increase rice lodging risk and that optimizing N application practices would improve rice lodging resistance without affecting food security.We conducted a two-factor(rice farming mode and N management practice)field experiment from2021 to 2022 to test our hypothesis.The rice farming modes included RM and RC,and the N management practices included no nitrogen fertilizer,conventional N application,and optimized N treatment.The rice yield and lodging resistance characteristics,such as morphology,mechanical and chemical characteristics,anatomic structure,and gene expression levels,were analyzed and compared among the treatments.Under the same N application practice,RC decreased the rice yield by 11.1-24.4% and increased the lodging index by 19.6-45.6% compared with the values yielded in RM.In RC,optimized N application decreased the plant height,panicle neck node height,center of gravity height,bending stress,and lodging index by 4.0-4.8%,5.2-7.8%,0.5-4.5%,5.5-10.5%,and 1.8-19.5%,respectively,compared with those in the conventional N application practice.Furthermore,it increased the culm diameter,culm wall thickness,breaking strength,and non-structural and structural carbohydrate content by 0.8-4.9%,2.2-53.1%,13.5-19.2%,2.2-24.7%,and 31.3-87.2%,respectively.Optimized N application increased sclerenchymal and parenchymal tissue areas of the vascular bundle at the culm wall of the base second internode.Furthermore,optimized N application upregulated genes involved in lignin and cellulose synthesis,thereby promoting lower internodes on the rice stem and enhancing lodging resistance.Optimized N application in RC significantly reduced the lodging index by 1.8-19.5%and stabilized the rice yield(>8,570 kg ha~(-1)on average).This study systematically analyzed and compared the differences in lodging characteristics between RM and RC.The findings will aid in the development of more efficient practices for RC that will reduce N fertilizer application.展开更多
In order to improve the yield and fertilizer utilization of the ricecrayfish rotation and direct seeding rice Nongxiang 32,the effects of different soil preparation and fertilizer application methods on the growth,yie...In order to improve the yield and fertilizer utilization of the ricecrayfish rotation and direct seeding rice Nongxiang 32,the effects of different soil preparation and fertilizer application methods on the growth,yield and fertilizer utilization of the variety were studied.The results showed that,under the rice-crayfish rotation and direct seeding farming mode,the contributions of seed setting rate,1000-grain weight,yield,and fertilizer contribution rate to yield of Nongxiang 32 in the treatments with rotary tillage with base fertilizer,rotary tillage without base fertilizer and no-tillage with base fertilizer were relatively higher than those in the treatments with rotary tillage without fertilizer,no-tillage without fertilizer and no-tillage without base fertilizer,and there were no significant differences between the three treatments.Rotary tillage with base fertilizer and rotary tillage without base fertilizer significantly increased the total number of stems and tillers,total number of ears,and number of effective ears.Rotary tillage and application of base fertilizer also significantly increased the number of tillers,plant weight and weed suppression ability in the early stage of rice growth.Therefore,in the different soil preparation and fertilizer application methods,the application of base fertilizer with rotary tillage was the best,followed by rotary tillage without base fertilizer and no-tillage with base fertilizer.展开更多
建立了稻虾种养系统土壤环境中稻瘟灵残留量的检测方法。采用改进的QuEChERS法处理样品,样品溶液经过在线凝胶色谱(GPC)进一步净化后直接进入气相色谱-三重四极杆质谱(gas chromatographytandem mass spectrometry,GC-MS/MS)联用仪检测...建立了稻虾种养系统土壤环境中稻瘟灵残留量的检测方法。采用改进的QuEChERS法处理样品,样品溶液经过在线凝胶色谱(GPC)进一步净化后直接进入气相色谱-三重四极杆质谱(gas chromatographytandem mass spectrometry,GC-MS/MS)联用仪检测,采集模式为多反应监测,内标法定量。结果表明:稻瘟灵化合物在10~100 ng/mL浓度范围内线性关系良好,相关系数>0.99;回收率范围为96%~109%,相对标准偏差(relative standard deviation,RSD)为2.0%。该方法操作简单,快速准确,在线GPC能有效去除基质干扰,提高分析灵敏度,满足农药残留定量分析的要求。展开更多
基金supported by the National Natural Science Foundation of China(32301961)the Natural Science Foundation of Jiangsu Province,China(BK20210791)+3 种基金the General Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province,China(2023SJYB2057)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD)the Qinglan Project of Yangzhou University,Chinathe Lv Yang Jin Feng Talent Plan of Yangzhou City,China(YZLYJF2020PHD100)。
文摘Nitrogen(N)significantly affects rice yield and lodging resistance.Previous studies have primarily investigated the impact of N management on rice lodging in conventional rice monoculture(RM);however,few studies have performed such investigations in rice-crayfish coculture(RC).We hypothesized that RC would increase rice lodging risk and that optimizing N application practices would improve rice lodging resistance without affecting food security.We conducted a two-factor(rice farming mode and N management practice)field experiment from2021 to 2022 to test our hypothesis.The rice farming modes included RM and RC,and the N management practices included no nitrogen fertilizer,conventional N application,and optimized N treatment.The rice yield and lodging resistance characteristics,such as morphology,mechanical and chemical characteristics,anatomic structure,and gene expression levels,were analyzed and compared among the treatments.Under the same N application practice,RC decreased the rice yield by 11.1-24.4% and increased the lodging index by 19.6-45.6% compared with the values yielded in RM.In RC,optimized N application decreased the plant height,panicle neck node height,center of gravity height,bending stress,and lodging index by 4.0-4.8%,5.2-7.8%,0.5-4.5%,5.5-10.5%,and 1.8-19.5%,respectively,compared with those in the conventional N application practice.Furthermore,it increased the culm diameter,culm wall thickness,breaking strength,and non-structural and structural carbohydrate content by 0.8-4.9%,2.2-53.1%,13.5-19.2%,2.2-24.7%,and 31.3-87.2%,respectively.Optimized N application increased sclerenchymal and parenchymal tissue areas of the vascular bundle at the culm wall of the base second internode.Furthermore,optimized N application upregulated genes involved in lignin and cellulose synthesis,thereby promoting lower internodes on the rice stem and enhancing lodging resistance.Optimized N application in RC significantly reduced the lodging index by 1.8-19.5%and stabilized the rice yield(>8,570 kg ha~(-1)on average).This study systematically analyzed and compared the differences in lodging characteristics between RM and RC.The findings will aid in the development of more efficient practices for RC that will reduce N fertilizer application.
文摘In order to improve the yield and fertilizer utilization of the ricecrayfish rotation and direct seeding rice Nongxiang 32,the effects of different soil preparation and fertilizer application methods on the growth,yield and fertilizer utilization of the variety were studied.The results showed that,under the rice-crayfish rotation and direct seeding farming mode,the contributions of seed setting rate,1000-grain weight,yield,and fertilizer contribution rate to yield of Nongxiang 32 in the treatments with rotary tillage with base fertilizer,rotary tillage without base fertilizer and no-tillage with base fertilizer were relatively higher than those in the treatments with rotary tillage without fertilizer,no-tillage without fertilizer and no-tillage without base fertilizer,and there were no significant differences between the three treatments.Rotary tillage with base fertilizer and rotary tillage without base fertilizer significantly increased the total number of stems and tillers,total number of ears,and number of effective ears.Rotary tillage and application of base fertilizer also significantly increased the number of tillers,plant weight and weed suppression ability in the early stage of rice growth.Therefore,in the different soil preparation and fertilizer application methods,the application of base fertilizer with rotary tillage was the best,followed by rotary tillage without base fertilizer and no-tillage with base fertilizer.
文摘建立了稻虾种养系统土壤环境中稻瘟灵残留量的检测方法。采用改进的QuEChERS法处理样品,样品溶液经过在线凝胶色谱(GPC)进一步净化后直接进入气相色谱-三重四极杆质谱(gas chromatographytandem mass spectrometry,GC-MS/MS)联用仪检测,采集模式为多反应监测,内标法定量。结果表明:稻瘟灵化合物在10~100 ng/mL浓度范围内线性关系良好,相关系数>0.99;回收率范围为96%~109%,相对标准偏差(relative standard deviation,RSD)为2.0%。该方法操作简单,快速准确,在线GPC能有效去除基质干扰,提高分析灵敏度,满足农药残留定量分析的要求。