In this research article, two finite difference implicit numerical schemes are described to approximate the numerical solution of the two-dimension modified reaction diffusion Fisher’s system which exists in coupled ...In this research article, two finite difference implicit numerical schemes are described to approximate the numerical solution of the two-dimension modified reaction diffusion Fisher’s system which exists in coupled form. Finite difference implicit schemes show unconditionally stable and second-order accurate nature of computational algorithm also the validation and comparison of analytical solution, are done through the examples having known analytical solution. It is found that the numerical schemes are in excellent agreement with the analytical solution. We found, second-implicit scheme is much faster than the first with good rate of convergence also we used NVIDA devices to accelerate the computations and efficiency of the algorithm. Numerical results show our proposed schemes with use of HPC (High performance computing) are very efficient and reliable.展开更多
An efficient high-order immersed interface method (IIM) is proposed to solve two-dimensional (2D) heat problems with fixed interfaces on Cartesian grids, which has the fourth-order accuracy in the maximum norm in ...An efficient high-order immersed interface method (IIM) is proposed to solve two-dimensional (2D) heat problems with fixed interfaces on Cartesian grids, which has the fourth-order accuracy in the maximum norm in both time and space directions. The space variable is discretized by a high-order compact (HOC) difference scheme with correction terms added at the irregular points. The time derivative is integrated by a Crank-Nicolson and alternative direction implicit (ADI) scheme. In this case, the time accuracy is just second-order. The Richardson extrapolation method is used to improve the time accuracy to fourth-order. The numerical results confirm the convergence order and the efficiency of the method.展开更多
文摘In this research article, two finite difference implicit numerical schemes are described to approximate the numerical solution of the two-dimension modified reaction diffusion Fisher’s system which exists in coupled form. Finite difference implicit schemes show unconditionally stable and second-order accurate nature of computational algorithm also the validation and comparison of analytical solution, are done through the examples having known analytical solution. It is found that the numerical schemes are in excellent agreement with the analytical solution. We found, second-implicit scheme is much faster than the first with good rate of convergence also we used NVIDA devices to accelerate the computations and efficiency of the algorithm. Numerical results show our proposed schemes with use of HPC (High performance computing) are very efficient and reliable.
基金supported by the National Natural Science Foundation of China(No.51174236)the National Basic Research Program of China(973 Program)(No.2011CB606306)the Opening Project of State Key Laboratory of Porous Metal Materials(No.PMM-SKL-4-2012)
文摘An efficient high-order immersed interface method (IIM) is proposed to solve two-dimensional (2D) heat problems with fixed interfaces on Cartesian grids, which has the fourth-order accuracy in the maximum norm in both time and space directions. The space variable is discretized by a high-order compact (HOC) difference scheme with correction terms added at the irregular points. The time derivative is integrated by a Crank-Nicolson and alternative direction implicit (ADI) scheme. In this case, the time accuracy is just second-order. The Richardson extrapolation method is used to improve the time accuracy to fourth-order. The numerical results confirm the convergence order and the efficiency of the method.