The dynamics of the reshocked multi-mode Richtmyer-Meshkov instability is investigated using 513 × 257^2 three-dimensional ninth-order weighted essentially nonoscil- latory shock-capturing simulations. A two-mode...The dynamics of the reshocked multi-mode Richtmyer-Meshkov instability is investigated using 513 × 257^2 three-dimensional ninth-order weighted essentially nonoscil- latory shock-capturing simulations. A two-mode initial perturbation with superposed ran- dom noise is used to model the Mach 1.5 air/SF6 Vetter-Sturtevant shock tube experiment. The mass fraction and enstrophy isosurfaces, and density cross-sections are utilized to show the detailed flow structure before, during, and after reshock. It is shown that the mixing layer growth agrees well with the experimentally measured growth rate before and after reshock. The post-reshock growth rate is also in good agreement with the prediction of the Mikaelian model. A parametric study of the sensitivity of the layer growth to the choice of amplitudes of the short and long wavelength initial interfacial perturbation is also pre- sented. Finally, the amplification effects of reshock are quantified using the evolution of the turbulent kinetic energy and turbulent enstrophy spectra, as well as the evolution of the baroclinic enstrophy production, buoyancy production, and shear production terms in the enstrophy and turbulent kinetic transport equations.展开更多
Detonation initiation resulting from the Richtmyer-Meshkov instability is investigated numerically in the configuration of the shock/spark-induced-deflagration interaction in a combustive gas mixture. Two-dimensional ...Detonation initiation resulting from the Richtmyer-Meshkov instability is investigated numerically in the configuration of the shock/spark-induced-deflagration interaction in a combustive gas mixture. Two-dimensional multi-species Navier-Stokes equations implemented with the detailed chemical reaction model are solved with the dispersion-controlled dissipative scheme. Numerical results show that the spark can create a blast wave and ignite deflagrations. Then, the deflagration waves are enhanced due to the Richtmyer-Meshkov instability, which provides detonation initiations with local environment conditions. By examining the deflagration fronts, two kinds of the initiation mechanisms are identified. One is referred to as the deflagration front acceleration with the help of the weak shock wave, occurring on the convex surfaces, and the other is the hot spot explosion deriving from the deflagration front focusing, occurring on the concave surfaces.展开更多
In this paper, a numerical method with high order accuracy and high resolution was developed to simulate the Richtmyer-Meshkov(RM) instability driven by cylindrical shock waves. Compressible Euler equations in cylin...In this paper, a numerical method with high order accuracy and high resolution was developed to simulate the Richtmyer-Meshkov(RM) instability driven by cylindrical shock waves. Compressible Euler equations in cylindrical coordinate were adopted for the cylindrical geometry and a third order accurate group control scheme was adopted to discretize the equations. Moreover, an adaptive grid technique was developed to refine the grid near the moving interface to improve the resolution of numerical solutions. The results of simulation exhibited the evolution process of RM instability, and the effect of Atwood number was studied. The larger the absolute value of Atwood number, the larger the perturbation amplitude. The nonlinear effect manifests more evidently in cylindrical geometry. The shock reflected from the pole center accelerates the interface for the second time, considerably complicating the interface evolution process, and such phenomena of reshock and secondary shock were studied.展开更多
The interaction between a converging cylindrical shock and double density interfaces in the presence of a saddle magnetic field is numerically investigated within the framework of ideal magnetohydrodynamics.Three flui...The interaction between a converging cylindrical shock and double density interfaces in the presence of a saddle magnetic field is numerically investigated within the framework of ideal magnetohydrodynamics.Three fluids of differing densities are initially separated by the two perturbed cylindrical interfaces.The initial incident converging shock is generated from a Riemann problem upstream of the first interface.The effect of the magnetic field on the instabilities is studied through varying the field strength.It shows that the Richtmyer-Meshkov and Rayleigh-Taylor instabilities are mitigated by the field,however,the extent of the suppression varies on the interface which leads to non-axisymmetric growth of the perturbations.The degree of asymmetry of the interfacial growth rate is increased when the seed field strength is increased.展开更多
The aims of the present paper are twofold. At first, we further study the Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) model proposed in [Europhys. Lett. 90 (2010) 54003]. We discuss the reason why the ...The aims of the present paper are twofold. At first, we further study the Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) model proposed in [Europhys. Lett. 90 (2010) 54003]. We discuss the reason why the Gram Schmidt orthogonalization procedure is not needed in the construction of transformation matrix M; point out a reason why the Kataoka-Tsutahara model [Phys. Rev. E 69 (2004) 035701(R)] is only valid in subsonic flows. The yon Neumann stability analysis is performed. Secondly, we carry out a preliminary quantitative study on the Richtmyer- Meshkov instability using the proposed MRT LB model. When a shock wave travels from a light medium to a heavy one, the simulated growth rate is in qualitative agreement with the perturbation model by Zhang-Sohn. It is about half of the predicted value by the impulsive model and is closer to the experimental result. When the shock wave travels from a heavy medium to a light one, our simulation results are also consistent with physical analysis.展开更多
The growth of multi-mode Richtmyer-Meshkov instability under multiple impingements and the effect of initial shock strength on the growth of RMI are numerically investigated. We obtain the time evolution of turbulent ...The growth of multi-mode Richtmyer-Meshkov instability under multiple impingements and the effect of initial shock strength on the growth of RMI are numerically investigated. We obtain the time evolution of turbulent mixing zone width for initial shock with different strength. The results show that the turbulent mixing zone width grows in a different manner at different stage but strictly in a similar way for the initial shock with different strength. Also, the initial shock strength has a significant effect on the growth rate of turbulent mixing zone width, especially before reshock, but can not change the growth laws in the whole process.展开更多
A program MVFT3D of large-eddy simulation is developed and performed to solve the multi compressible Navier- Stokes equations. The SGS dissipation and molecular viscosity dissipation have been analyzed, and the former...A program MVFT3D of large-eddy simulation is developed and performed to solve the multi compressible Navier- Stokes equations. The SGS dissipation and molecular viscosity dissipation have been analyzed, and the former is much larger than the later. Our test shows that the SGS dissipation of Vreman model is smaller than the Smagorinsky model. We mainly simulate the experiment of fluid instability of shock-accelerated interface by Poggi in this paper. The decay of the turbulent kinetic energy before the first reflected shock wave–mixing zone interaction and its strong enhancement by re-shocks are presented in our numerical simulations. The computational mixing zone width under double re-shock agreement well with the experiment, and the decaying law of the turbulent kinetic energy is consistent with Mohamed and Larue’s investigation. Also, by using MVFT3D we give some simulation results of the inverse Chevron model from AWE. The numerical simulations presented in this paper allow us to characterize and better understand the Richtmyer-Meshkov instability induced turbulence, and the code MVFT3D is validated.展开更多
This study investigates numerically the coupling effect on the evolution of Richtmyer-Meshkov instability at double heavy square bubbles.Five scenarios are considered,each with varying initial separations S/L(where L ...This study investigates numerically the coupling effect on the evolution of Richtmyer-Meshkov instability at double heavy square bubbles.Five scenarios are considered,each with varying initial separations S/L(where L demotes the side length of the square)ranging from 0.125 to 1.0.Squares are filled with SF6gas,and are enclosed by N2gas.The simulations of shock-induced multispecies flow are performed by solving the two-dimensional compressible Euler equations with a higher-order explicit modal discontinuous Galerkin solver.The simulations demonstrate that the flow morphology resulting from the coupling effect is highly dependent on the separation between two squares.When the separation is large,the squares experience a weaker coupling effect and evolve independently.While,as the separation reduces,the coupling effect manifests earlier in the interaction and becomes more substantial.As a result,this phenomenon greatly intensifies the motion of inner upstream/downstream vortex rings towards the symmetry axis,leading to the emergence of multiple jets such as the twisted downward,upward,and coupled jets.A thorough exploration of the coupling effect of double squares is conducted by analyzing the vorticity production.Notably,a significant quantity of vorticity is produced along the squares interface for smaller separation.Further,these coupling effects result in various interface features(upstream/downstream movement,and height/width evolution),and temporal variations of various spatially integrated fields.Finally,the analysis of the flow structure also considers the interaction between two more flow parameters,the Mach and Atwood numbers,in order to evaluate the coupling effects.展开更多
The Richtmyer-Meshkov instability of interfaces separating elastic-plastic materials from vacuum is investigated by numerical simulation using a multi-material solid mechanics algorithm based on an Eulerian framework....The Richtmyer-Meshkov instability of interfaces separating elastic-plastic materials from vacuum is investigated by numerical simulation using a multi-material solid mechanics algorithm based on an Eulerian framework.The research efforts are directed to reveal the influence of the initial perturbation and material strength on the deformation of the perturbed interface impacted by an initial shock.By varying the initial amplitude(kx0)of the perturbed interface and the yield stress(sY),three typical modes of interface deformation have been identified as the broken mode,the stable mode and the oscillating mode.For the broken mode,the interface width(i.e.,the bubble position with respect to that of the spike)increases continuously resulting in a final separation of the spike from the perturbed interface.For the stable mode,the interface width grows to saturation and then maintains a nearly constant value in the long term.For the oscillating mode,the wavy-like interface moving forward obtains an aperiodic oscillation of small amplitude,namely,the interface width varies in time slightly around zero.The intriguing difference of the typical modes is interpreted qualitatively by comparing the early-stage wave motion and the commensurate pressure and effective stress.Further,the subsequent interface deformation is illustrated quantitatively via the time series of the interface positions and velocities of these three typical modes.展开更多
The explicit analytical solution of Rosensweig instability spikes'shapes obtained by Navier-Stokes(NS)equation in diverse magnetic field H vertical to the flat free surface of ferrofluids are systematically studie...The explicit analytical solution of Rosensweig instability spikes'shapes obtained by Navier-Stokes(NS)equation in diverse magnetic field H vertical to the flat free surface of ferrofluids are systematically studied experimentally and theoretically.After carefully analyzing and solving the NS equation in elliptic form,the force balanced surface equations of spikes in Rosensweig instability are expressed as cosine wave in perturbated magnetic field and hyperbolic tangent in large magnetic field,whose results both reveal the wave-like nature of Rosensweig instability.The results of hyperbolic tangent form are perfectly fitted to the experimental results in this paper,which indicates that the analytical solution is basically correct.Using the forementioned theoretical results,the total energy of the spike distribution pattern is calculated.By analyzing the energy components under different magnetic field intensities H,the hexagon-square transition of Rosensweig instability is systematically discussed and explained in an explicit way.展开更多
By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the el...By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the elasticity of the material at the interface effectively determines the wavelength, because explosive welding is basically a solid-state welding process. To this end, an analytical model of elastic hydrodynamic instabilities is proposed, and the most unstable mode is selected in the solid phase. Similar approaches have been widely used to study the interfacial behavior of solid metals in high-energy-density physics. By comparing the experimental and theoretical results, it is concluded that thermal softening,which significantly reduces the shear modulus, is necessary and sufficient for successful welding. The thermal softening is verified by theoretical analysis of the increase in temperature due to the impacting and sliding of the flyer and base plates, and some experimental observations are qualitatively validated.In summary, the combined effect of the KH and RT instabilities in solids determines the wavy morphology, and our theoretical results are in good qualitative agreement with experimental and numerical observations.展开更多
Introduction: There has been a surge in the use of tendoscopic surgery for treating peroneal tendons instability. The novelty of this approach demanded a literature review of its indications, limitations, and clinical...Introduction: There has been a surge in the use of tendoscopic surgery for treating peroneal tendons instability. The novelty of this approach demanded a literature review of its indications, limitations, and clinical outcomes. Aim: a literature review of the clinical studies reporting on tendoscopic peroneal tendon stabilisation surgery along with its outcomes and complications. Methods: We carried out a comprehensive review of the literature up until September 2022 with an extensive search of the MEDLINE, Embase and Cochrane library databases. Results: Initial search resulted in 66 articles. Four duplicate articles were removed. Further 30 articles were excluded after title and abstract screening. Eight studies satisfied the inclusion criteria and were included in this review. Articles were analysed for outcomes and complications. Conclusion: The tendoscopic technique for peroneal tendon instability is an effective and safe surgical technique with very low failure rate. Levels of Evidence: Level IV.展开更多
Transverse mode-coupling instability(TMCI)is a dangerous transverse single-bunch instability that can lead to severe par-ticle loss.The mechanism of TMCI can be explained by the coupling of transverse coherent oscilla...Transverse mode-coupling instability(TMCI)is a dangerous transverse single-bunch instability that can lead to severe par-ticle loss.The mechanism of TMCI can be explained by the coupling of transverse coherent oscillation modes owing to the transverse short-range wakefield(i.e.,the transverse broadband impedance).Recent studies on future circular colliders,e.g.,FCC-ee,showed that the threshold of TMCI decreased significantly when both longitudinal and transverse impedances were included.We performed computations for the circular electron-positron collider(CEPC)and observed a similar phenom-enon.Systematic studies on the influence of longitudinal impedance on the TMCI threshold were conducted.We concluded that the imaginary part of the longitudinal impedance,which caused a reduction in the incoherent synchrotron tune,was the primary reason for the reduction in the TMCI threshold.Additionally,the real part of the longitudinal impedance assists in increasing the TMCI threshold.展开更多
Background and Objectives: Ankle injuries are the most common type of injury in healthy active individuals. If not treated properly, recurrent sprains can lead to a condition of chronic ankle instability (CAI). The pr...Background and Objectives: Ankle injuries are the most common type of injury in healthy active individuals. If not treated properly, recurrent sprains can lead to a condition of chronic ankle instability (CAI). The present paper examines some subjects with a previous history of acute inversion ankle sprain who have developed a subsequent condition of instability, grouping them according to inclusion criteria and analyzing them through four field tests considered objective by the scientific literature: SEBT test, BEES test, TIBT test, SHT test. The data obtained were stored in order to compare them following a re-education protocol aimed at improving proprioception, balance, walking and strengthening the extrinsic and intrinsic muscles of the foot. per year. The subjects were then divided into two categories: subjects with CAI > 1 year and subjects with CAI ≤ 1 year. A protocol lasting 6 weeks was administered to both groups, trying to work on improving balance in single stance, improving static and dynamic stability, strengthening the gluteus medius and maximus (pelvis stabilizers) and strengthening of the intrinsic muscles of the foot. At the end of the protocol the subjects were all re-evaluated with the same field tests used previously and the data obtained were compared both with the pre-protocol data and with the data measured by the control subjects.展开更多
We study the nonlinear stage of modulation instability(MI)in the non-intergrable pure-quartic nonlinear Schrödinger equation where the fourth-order dispersion is modulated periodically.Using the three-mode trunca...We study the nonlinear stage of modulation instability(MI)in the non-intergrable pure-quartic nonlinear Schrödinger equation where the fourth-order dispersion is modulated periodically.Using the three-mode truncation,we reveal the complex recurrence of parametric resonance(PR)breathers,where each recurrence is associated with two oscillation periods(PR period and internal oscillation period).The nonlinear stage of parametric instability admits the maximum energy exchange between the spectrum sidebands and central mode occurring outside the MI gain band.展开更多
The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA)....The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA). The TK6 cell line has the native p53 tumor-suppressor gene, whereas WTK1 cells contain a p53 mutation. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. The impact of irradiation on these two cell lines was investigated using probes that target specific regions on chromosomes associated with subtelomeric regions. Results indicate that WTK1 and TK6 are impacted differently after irradiation, and that each cell line presents its own unique MLPA profile. The most notable differences are the appearance of a number of probes in the post-irradiated MLPA profile that are not present in the controls, and two unique probe signals only seen in WTK1 cells. These results build on our previous studies that indicate how different human cell lines can be affected by radiation in significantly different ways depending on the presence or absence of wild type p53.展开更多
The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In re...The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In recent years, extensive simulation research on the characteristics of EDI has been conducted, but the excitation mechanism and growth mechanism of EDI in linear stage and nonlinear stage remain unclear. In this work, a one-dimensional PIC model in the azimuthal direction of the thruster near-exit region is established to gain further insights into the mechanism of the EDI in detail, and the effects of different types of propellants on EDI characteristics are discussed. The changes in axial electron transport caused by EDI under different types of propellants and electromagnetic field strengths are also examined. The results indicate that EDI undergoes a short linear growth phase before transitioning to the nonlinear phase and finally reaching saturation through the ion Landau damping. The EDI drives a significant ion heating in the azimuthal direction through electron–ion friction before entering the quasi-steady state, which increases the axial mobility of the electrons. Using lighter atomic weight propellant can effectively suppress the oscillation amplitude of EDI, but it will increase the linear growth rate, frequency, and phase velocity of EDI. Compared with the classical mobility, the axial electron mobility under the EDI increases by three orders of magnitude, which is consistent with experimental phenomena. The change of propellant type is insufficient to significantly change the axial electron mobility. It is also found that the collisions between electrons and neutral gasescan significantly affect the axial electron mobility under the influence of EDI, and lead the strength of the electric field to increase and the strength of the magnetic field to decrease, thereby both effectively suppressing the axial transport of electrons.展开更多
The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas w...The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.展开更多
The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the ...The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models.展开更多
基金performed under the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
文摘The dynamics of the reshocked multi-mode Richtmyer-Meshkov instability is investigated using 513 × 257^2 three-dimensional ninth-order weighted essentially nonoscil- latory shock-capturing simulations. A two-mode initial perturbation with superposed ran- dom noise is used to model the Mach 1.5 air/SF6 Vetter-Sturtevant shock tube experiment. The mass fraction and enstrophy isosurfaces, and density cross-sections are utilized to show the detailed flow structure before, during, and after reshock. It is shown that the mixing layer growth agrees well with the experimentally measured growth rate before and after reshock. The post-reshock growth rate is also in good agreement with the prediction of the Mikaelian model. A parametric study of the sensitivity of the layer growth to the choice of amplitudes of the short and long wavelength initial interfacial perturbation is also pre- sented. Finally, the amplification effects of reshock are quantified using the evolution of the turbulent kinetic energy and turbulent enstrophy spectra, as well as the evolution of the baroclinic enstrophy production, buoyancy production, and shear production terms in the enstrophy and turbulent kinetic transport equations.
基金The project supported by the National Natural Science Foundation of China(90205027 and 10632090)
文摘Detonation initiation resulting from the Richtmyer-Meshkov instability is investigated numerically in the configuration of the shock/spark-induced-deflagration interaction in a combustive gas mixture. Two-dimensional multi-species Navier-Stokes equations implemented with the detailed chemical reaction model are solved with the dispersion-controlled dissipative scheme. Numerical results show that the spark can create a blast wave and ignite deflagrations. Then, the deflagration waves are enhanced due to the Richtmyer-Meshkov instability, which provides detonation initiations with local environment conditions. By examining the deflagration fronts, two kinds of the initiation mechanisms are identified. One is referred to as the deflagration front acceleration with the help of the weak shock wave, occurring on the convex surfaces, and the other is the hot spot explosion deriving from the deflagration front focusing, occurring on the concave surfaces.
基金The project supported by the National Natural Science Foundation of China (10176033, 10135010 and 90205025)The English text was polished by Yunming Chen
文摘In this paper, a numerical method with high order accuracy and high resolution was developed to simulate the Richtmyer-Meshkov(RM) instability driven by cylindrical shock waves. Compressible Euler equations in cylindrical coordinate were adopted for the cylindrical geometry and a third order accurate group control scheme was adopted to discretize the equations. Moreover, an adaptive grid technique was developed to refine the grid near the moving interface to improve the resolution of numerical solutions. The results of simulation exhibited the evolution process of RM instability, and the effect of Atwood number was studied. The larger the absolute value of Atwood number, the larger the perturbation amplitude. The nonlinear effect manifests more evidently in cylindrical geometry. The shock reflected from the pole center accelerates the interface for the second time, considerably complicating the interface evolution process, and such phenomena of reshock and secondary shock were studied.
基金This work was supported by the KAUST Office of Spon-sored Research under Award No.URF/1/2162-01.
文摘The interaction between a converging cylindrical shock and double density interfaces in the presence of a saddle magnetic field is numerically investigated within the framework of ideal magnetohydrodynamics.Three fluids of differing densities are initially separated by the two perturbed cylindrical interfaces.The initial incident converging shock is generated from a Riemann problem upstream of the first interface.The effect of the magnetic field on the instabilities is studied through varying the field strength.It shows that the Richtmyer-Meshkov and Rayleigh-Taylor instabilities are mitigated by the field,however,the extent of the suppression varies on the interface which leads to non-axisymmetric growth of the perturbations.The degree of asymmetry of the interfacial growth rate is increased when the seed field strength is increased.
基金Support by the Science Foundations of Laboratory of Computational Physics,Science Foundation of China Academy of Engineering Physics under Grant Nos.2009A0102005,2009B0101012National Basic Research Program of China under Grant No.2007CB815105National Natural Science Foundation of China under Grant Nos.11074300,11075021,and 11071024
文摘The aims of the present paper are twofold. At first, we further study the Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) model proposed in [Europhys. Lett. 90 (2010) 54003]. We discuss the reason why the Gram Schmidt orthogonalization procedure is not needed in the construction of transformation matrix M; point out a reason why the Kataoka-Tsutahara model [Phys. Rev. E 69 (2004) 035701(R)] is only valid in subsonic flows. The yon Neumann stability analysis is performed. Secondly, we carry out a preliminary quantitative study on the Richtmyer- Meshkov instability using the proposed MRT LB model. When a shock wave travels from a light medium to a heavy one, the simulated growth rate is in qualitative agreement with the perturbation model by Zhang-Sohn. It is about half of the predicted value by the impulsive model and is closer to the experimental result. When the shock wave travels from a heavy medium to a light one, our simulation results are also consistent with physical analysis.
文摘The growth of multi-mode Richtmyer-Meshkov instability under multiple impingements and the effect of initial shock strength on the growth of RMI are numerically investigated. We obtain the time evolution of turbulent mixing zone width for initial shock with different strength. The results show that the turbulent mixing zone width grows in a different manner at different stage but strictly in a similar way for the initial shock with different strength. Also, the initial shock strength has a significant effect on the growth rate of turbulent mixing zone width, especially before reshock, but can not change the growth laws in the whole process.
文摘A program MVFT3D of large-eddy simulation is developed and performed to solve the multi compressible Navier- Stokes equations. The SGS dissipation and molecular viscosity dissipation have been analyzed, and the former is much larger than the later. Our test shows that the SGS dissipation of Vreman model is smaller than the Smagorinsky model. We mainly simulate the experiment of fluid instability of shock-accelerated interface by Poggi in this paper. The decay of the turbulent kinetic energy before the first reflected shock wave–mixing zone interaction and its strong enhancement by re-shocks are presented in our numerical simulations. The computational mixing zone width under double re-shock agreement well with the experiment, and the decaying law of the turbulent kinetic energy is consistent with Mohamed and Larue’s investigation. Also, by using MVFT3D we give some simulation results of the inverse Chevron model from AWE. The numerical simulations presented in this paper allow us to characterize and better understand the Richtmyer-Meshkov instability induced turbulence, and the code MVFT3D is validated.
基金the funding through the German Research Foundation within the research unit DFG-FOR5409。
文摘This study investigates numerically the coupling effect on the evolution of Richtmyer-Meshkov instability at double heavy square bubbles.Five scenarios are considered,each with varying initial separations S/L(where L demotes the side length of the square)ranging from 0.125 to 1.0.Squares are filled with SF6gas,and are enclosed by N2gas.The simulations of shock-induced multispecies flow are performed by solving the two-dimensional compressible Euler equations with a higher-order explicit modal discontinuous Galerkin solver.The simulations demonstrate that the flow morphology resulting from the coupling effect is highly dependent on the separation between two squares.When the separation is large,the squares experience a weaker coupling effect and evolve independently.While,as the separation reduces,the coupling effect manifests earlier in the interaction and becomes more substantial.As a result,this phenomenon greatly intensifies the motion of inner upstream/downstream vortex rings towards the symmetry axis,leading to the emergence of multiple jets such as the twisted downward,upward,and coupled jets.A thorough exploration of the coupling effect of double squares is conducted by analyzing the vorticity production.Notably,a significant quantity of vorticity is produced along the squares interface for smaller separation.Further,these coupling effects result in various interface features(upstream/downstream movement,and height/width evolution),and temporal variations of various spatially integrated fields.Finally,the analysis of the flow structure also considers the interaction between two more flow parameters,the Mach and Atwood numbers,in order to evaluate the coupling effects.
基金supported by the National Natural Science Foundation of China(Nos.12172353,92052301,11621202 and 12202436)the Science Challenge Project(No.TZ2016001)the National Science Foundation(No.CBET0755269).
文摘The Richtmyer-Meshkov instability of interfaces separating elastic-plastic materials from vacuum is investigated by numerical simulation using a multi-material solid mechanics algorithm based on an Eulerian framework.The research efforts are directed to reveal the influence of the initial perturbation and material strength on the deformation of the perturbed interface impacted by an initial shock.By varying the initial amplitude(kx0)of the perturbed interface and the yield stress(sY),three typical modes of interface deformation have been identified as the broken mode,the stable mode and the oscillating mode.For the broken mode,the interface width(i.e.,the bubble position with respect to that of the spike)increases continuously resulting in a final separation of the spike from the perturbed interface.For the stable mode,the interface width grows to saturation and then maintains a nearly constant value in the long term.For the oscillating mode,the wavy-like interface moving forward obtains an aperiodic oscillation of small amplitude,namely,the interface width varies in time slightly around zero.The intriguing difference of the typical modes is interpreted qualitatively by comparing the early-stage wave motion and the commensurate pressure and effective stress.Further,the subsequent interface deformation is illustrated quantitatively via the time series of the interface positions and velocities of these three typical modes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51735006,51927810,and U1837206)Beijing Municipal Natural Science Foundation(Grant No.3182013).
文摘The explicit analytical solution of Rosensweig instability spikes'shapes obtained by Navier-Stokes(NS)equation in diverse magnetic field H vertical to the flat free surface of ferrofluids are systematically studied experimentally and theoretically.After carefully analyzing and solving the NS equation in elliptic form,the force balanced surface equations of spikes in Rosensweig instability are expressed as cosine wave in perturbated magnetic field and hyperbolic tangent in large magnetic field,whose results both reveal the wave-like nature of Rosensweig instability.The results of hyperbolic tangent form are perfectly fitted to the experimental results in this paper,which indicates that the analytical solution is basically correct.Using the forementioned theoretical results,the total energy of the spike distribution pattern is calculated.By analyzing the energy components under different magnetic field intensities H,the hexagon-square transition of Rosensweig instability is systematically discussed and explained in an explicit way.
基金the National Natural Science Foundation of China(Grant Nos.12002037 and 12141201).
文摘By considering the joint effects of the Kelvin-Helmholtz(KH) and Rayleigh-Taylor(RT) instabilities, this paper presents an interpretation of the wavy patterns that occur in explosive welding. It is assumed that the elasticity of the material at the interface effectively determines the wavelength, because explosive welding is basically a solid-state welding process. To this end, an analytical model of elastic hydrodynamic instabilities is proposed, and the most unstable mode is selected in the solid phase. Similar approaches have been widely used to study the interfacial behavior of solid metals in high-energy-density physics. By comparing the experimental and theoretical results, it is concluded that thermal softening,which significantly reduces the shear modulus, is necessary and sufficient for successful welding. The thermal softening is verified by theoretical analysis of the increase in temperature due to the impacting and sliding of the flyer and base plates, and some experimental observations are qualitatively validated.In summary, the combined effect of the KH and RT instabilities in solids determines the wavy morphology, and our theoretical results are in good qualitative agreement with experimental and numerical observations.
文摘Introduction: There has been a surge in the use of tendoscopic surgery for treating peroneal tendons instability. The novelty of this approach demanded a literature review of its indications, limitations, and clinical outcomes. Aim: a literature review of the clinical studies reporting on tendoscopic peroneal tendon stabilisation surgery along with its outcomes and complications. Methods: We carried out a comprehensive review of the literature up until September 2022 with an extensive search of the MEDLINE, Embase and Cochrane library databases. Results: Initial search resulted in 66 articles. Four duplicate articles were removed. Further 30 articles were excluded after title and abstract screening. Eight studies satisfied the inclusion criteria and were included in this review. Articles were analysed for outcomes and complications. Conclusion: The tendoscopic technique for peroneal tendon instability is an effective and safe surgical technique with very low failure rate. Levels of Evidence: Level IV.
基金the National Natural Science Foundation of China(No.12375149)the National Key R&D Program of China(No.2022YFA1603401)the Innovation Study of the IHEP.
文摘Transverse mode-coupling instability(TMCI)is a dangerous transverse single-bunch instability that can lead to severe par-ticle loss.The mechanism of TMCI can be explained by the coupling of transverse coherent oscillation modes owing to the transverse short-range wakefield(i.e.,the transverse broadband impedance).Recent studies on future circular colliders,e.g.,FCC-ee,showed that the threshold of TMCI decreased significantly when both longitudinal and transverse impedances were included.We performed computations for the circular electron-positron collider(CEPC)and observed a similar phenom-enon.Systematic studies on the influence of longitudinal impedance on the TMCI threshold were conducted.We concluded that the imaginary part of the longitudinal impedance,which caused a reduction in the incoherent synchrotron tune,was the primary reason for the reduction in the TMCI threshold.Additionally,the real part of the longitudinal impedance assists in increasing the TMCI threshold.
文摘Background and Objectives: Ankle injuries are the most common type of injury in healthy active individuals. If not treated properly, recurrent sprains can lead to a condition of chronic ankle instability (CAI). The present paper examines some subjects with a previous history of acute inversion ankle sprain who have developed a subsequent condition of instability, grouping them according to inclusion criteria and analyzing them through four field tests considered objective by the scientific literature: SEBT test, BEES test, TIBT test, SHT test. The data obtained were stored in order to compare them following a re-education protocol aimed at improving proprioception, balance, walking and strengthening the extrinsic and intrinsic muscles of the foot. per year. The subjects were then divided into two categories: subjects with CAI > 1 year and subjects with CAI ≤ 1 year. A protocol lasting 6 weeks was administered to both groups, trying to work on improving balance in single stance, improving static and dynamic stability, strengthening the gluteus medius and maximus (pelvis stabilizers) and strengthening of the intrinsic muscles of the foot. At the end of the protocol the subjects were all re-evaluated with the same field tests used previously and the data obtained were compared both with the pre-protocol data and with the data measured by the control subjects.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12175178 and 12247103)the Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2022KJXX-71)the Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant No.22JSY016).
文摘We study the nonlinear stage of modulation instability(MI)in the non-intergrable pure-quartic nonlinear Schrödinger equation where the fourth-order dispersion is modulated periodically.Using the three-mode truncation,we reveal the complex recurrence of parametric resonance(PR)breathers,where each recurrence is associated with two oscillation periods(PR period and internal oscillation period).The nonlinear stage of parametric instability admits the maximum energy exchange between the spectrum sidebands and central mode occurring outside the MI gain band.
文摘The integrity of the chromosomes for two WIL2-derived lymphoblastoid cell lines (TK6 and WTK1) in the presence and absence of ionizing radiation was analyzed by Multiplex Ligation-Dependent Probe Amplification (MLPA). The TK6 cell line has the native p53 tumor-suppressor gene, whereas WTK1 cells contain a p53 mutation. Each cell line was isolated pre- and post-irradiation (2 and 3 Gy) and analyzed by MLPA. The impact of irradiation on these two cell lines was investigated using probes that target specific regions on chromosomes associated with subtelomeric regions. Results indicate that WTK1 and TK6 are impacted differently after irradiation, and that each cell line presents its own unique MLPA profile. The most notable differences are the appearance of a number of probes in the post-irradiated MLPA profile that are not present in the controls, and two unique probe signals only seen in WTK1 cells. These results build on our previous studies that indicate how different human cell lines can be affected by radiation in significantly different ways depending on the presence or absence of wild type p53.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11975062 and 11605021)the Fundamental Research Funds for the Central Universities (Grant No.3132023192)。
文摘The existence of a significant electron drift instability(EDI) in the Hall thruster is considered as one of the possible causes of the abnormal increase in axial electron mobility near the outlet of the channel. In recent years, extensive simulation research on the characteristics of EDI has been conducted, but the excitation mechanism and growth mechanism of EDI in linear stage and nonlinear stage remain unclear. In this work, a one-dimensional PIC model in the azimuthal direction of the thruster near-exit region is established to gain further insights into the mechanism of the EDI in detail, and the effects of different types of propellants on EDI characteristics are discussed. The changes in axial electron transport caused by EDI under different types of propellants and electromagnetic field strengths are also examined. The results indicate that EDI undergoes a short linear growth phase before transitioning to the nonlinear phase and finally reaching saturation through the ion Landau damping. The EDI drives a significant ion heating in the azimuthal direction through electron–ion friction before entering the quasi-steady state, which increases the axial mobility of the electrons. Using lighter atomic weight propellant can effectively suppress the oscillation amplitude of EDI, but it will increase the linear growth rate, frequency, and phase velocity of EDI. Compared with the classical mobility, the axial electron mobility under the EDI increases by three orders of magnitude, which is consistent with experimental phenomena. The change of propellant type is insufficient to significantly change the axial electron mobility. It is also found that the collisions between electrons and neutral gasescan significantly affect the axial electron mobility under the influence of EDI, and lead the strength of the electric field to increase and the strength of the magnetic field to decrease, thereby both effectively suppressing the axial transport of electrons.
基金Project supported by the National Natural Science Foundation of China (Grant No.12065015)the Hongliu Firstlevel Discipline Construction Project of Lanzhou University of Technology。
文摘The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.
基金Supported by the National Natural Science Foundation of China(No.41976012)the Key Research Program of Laoshan Laboratory(LSL)(No.LSKJ 202202502)the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)(No.XDB 42000000)。
文摘The coupling between wind stress perturbations and sea surface temperature(SST)perturbations induced by tropical instability waves(TIWs)in the Pacific Ocean has been revealed previously and proven crucial to both the atmosphere and ocean.However,an overlooked fact by previous studies is that the loosely defined“TIWs”actually consist of two modes,including the Yanai wave-based TIW on the equator(hereafter eTIW)and the Rossby wave-based TIW off the equator(hereafter vTIW).Hence,the individual feedbacks of the wind stress to the bimodal TIWs remain unexplored.In this study,individual coupling relationships are established for both eTIW and v TIW,including the relationship between the TIW-induced SST perturbations and two components of wind stress perturbations,and the relationship between the TIW-induced wind stress perturbation divergence(curl)and the downwind(crosswind)TIW-induced SST gradients.Results show that,due to different distributions of eTIW and vTIW,the coupling strength induced by the eTIW is stronger on the equator,and that by the vTIW is stronger off the equator.The results of any of eTIW and vTIW are higher than those of the loosely defined TIWs.We further investigated how well the coupling relationships remained in several widely recognized oceanic general circulation models and fully coupled climate models.However,the coupling relationships cannot be well represented in most numerical models.Finally,we confirmed that higher resolution usually corresponds to more accurate simulation.Therefore,the coupling models established in this study are complementary to previous research and can be used to refine the oceanic and coupled climate models.