Activated carbon made from the shells of Ricinodendron heudelotii was used to remove the remazol black dye in aqueous solution. The results of the characterization of this carbon revealed that it is microporous, with ...Activated carbon made from the shells of Ricinodendron heudelotii was used to remove the remazol black dye in aqueous solution. The results of the characterization of this carbon revealed that it is microporous, with a basic global surface (0.337 mmol/L) and a specific surface of 612 m<sup>2</sup>/g. The prepared carbon therefore has excellent adsorbent properties. Kinetic and thermodynamic studies were carried out to describe the adsorption mechanism of remazol black on this carbon. It appears from this study that the pseudo-second-order kinetic model is the best suited to describe this adsorption phenomenon with an equilibrium time of 200 min. The adsorption equilibrium study revealed that Langmuir and Freundlich models can help to describe the adsorption process. We note that the optimum pH and optimum mass for the removal of 20 mg/L of remazol black are 3 and 0.25 g, respectively. This carbon made it possible to eliminate more than 98% of the remazol dye in aqueous solution. The thermodynamic study revealed that the adsorption is of the physisorption type, spontaneous and endothermic.展开更多
The purpose of this work is to prepare better activated carbons from the shells of Ricinodendron Heudelotii by chemical activation with sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) and sodium hy...The purpose of this work is to prepare better activated carbons from the shells of Ricinodendron Heudelotii by chemical activation with sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) and sodium hydroxide (NaOH). The process was optimized by a full factorial design (2<sup>K</sup>) based on the analysis of the external specific surface area of sixteen (16) activated carbons prepared according to the parameters of the preparation. This active analysis reveals that under the preparation conditions, good carbons are obtained for a sodium hydroxide concentration equal to 1 M, an impregnation time of 24 h and carbonization at 500˚C for 1 h. The external specific surface of this carbon is 358 m<sup>2</sup><sup> </sup>•<sup></sup> g<sup>-1</sup>. The characteristics of this prepared carbon are as follows: a pH at zero point charge (pHpzc) of 8.2, a predominantly amorphous structure, a basic character and a low ash content (4.2%). It also has surface functions;the lactonic and carbonyl groups (C=O) at 1600 cm<sup>-1</sup> and the carboxylate groups (O-H or C-O) at 1340 cm<sup>-1</sup>.展开更多
文摘Activated carbon made from the shells of Ricinodendron heudelotii was used to remove the remazol black dye in aqueous solution. The results of the characterization of this carbon revealed that it is microporous, with a basic global surface (0.337 mmol/L) and a specific surface of 612 m<sup>2</sup>/g. The prepared carbon therefore has excellent adsorbent properties. Kinetic and thermodynamic studies were carried out to describe the adsorption mechanism of remazol black on this carbon. It appears from this study that the pseudo-second-order kinetic model is the best suited to describe this adsorption phenomenon with an equilibrium time of 200 min. The adsorption equilibrium study revealed that Langmuir and Freundlich models can help to describe the adsorption process. We note that the optimum pH and optimum mass for the removal of 20 mg/L of remazol black are 3 and 0.25 g, respectively. This carbon made it possible to eliminate more than 98% of the remazol dye in aqueous solution. The thermodynamic study revealed that the adsorption is of the physisorption type, spontaneous and endothermic.
文摘The purpose of this work is to prepare better activated carbons from the shells of Ricinodendron Heudelotii by chemical activation with sulfuric acid (H<sub>2</sub>SO<sub>4</sub>) and sodium hydroxide (NaOH). The process was optimized by a full factorial design (2<sup>K</sup>) based on the analysis of the external specific surface area of sixteen (16) activated carbons prepared according to the parameters of the preparation. This active analysis reveals that under the preparation conditions, good carbons are obtained for a sodium hydroxide concentration equal to 1 M, an impregnation time of 24 h and carbonization at 500˚C for 1 h. The external specific surface of this carbon is 358 m<sup>2</sup><sup> </sup>•<sup></sup> g<sup>-1</sup>. The characteristics of this prepared carbon are as follows: a pH at zero point charge (pHpzc) of 8.2, a predominantly amorphous structure, a basic character and a low ash content (4.2%). It also has surface functions;the lactonic and carbonyl groups (C=O) at 1600 cm<sup>-1</sup> and the carboxylate groups (O-H or C-O) at 1340 cm<sup>-1</sup>.