期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Nuclear charge radius predictions by kernel ridge regression with odd-even effects
1
作者 Lu Tang Zhen-Hua Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期94-102,共9页
The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(... The extended kernel ridge regression(EKRR)method with odd-even effects was adopted to improve the description of the nuclear charge radius using five commonly used nuclear models.These are:(i)the isospin-dependent A^(1∕3) formula,(ii)relativistic continuum Hartree-Bogoliubov(RCHB)theory,(iii)Hartree-Fock-Bogoliubov(HFB)model HFB25,(iv)the Weizsacker-Skyrme(WS)model WS*,and(v)HFB25*model.In the last two models,the charge radii were calculated using a five-parameter formula with the nuclear shell corrections and deformations obtained from the WS and HFB25 models,respectively.For each model,the resultant root-mean-square deviation for the 1014 nuclei with proton number Z≥8 can be significantly reduced to 0.009-0.013 fm after considering the modification with the EKRR method.The best among them was the RCHB model,with a root-mean-square deviation of 0.0092 fm.The extrapolation abilities of the KRR and EKRR methods for the neutron-rich region were examined,and it was found that after considering the odd-even effects,the extrapolation power was improved compared with that of the original KRR method.The strong odd-even staggering of nuclear charge radii of Ca and Cu isotopes and the abrupt kinks across the neutron N=126 and 82 shell closures were also calculated and could be reproduced quite well by calculations using the EKRR method. 展开更多
关键词 Nuclear charge radius Machine learning Kernel ridge regression method
下载PDF
Accuracy and Efficiency: The Comparison of Different RPC Parameters Solving Methods
2
作者 Longhui Wang Tao Wang +1 位作者 Yan Zhang Kun Zhang 《Journal of Geoscience and Environment Protection》 2020年第10期117-126,共10页
<div style="text-align:justify;"> As a generalized sensor, the RPC model with its accuracy equally matches the physical sensor model. Moreover, the accurate positioning combining with the flexibility i... <div style="text-align:justify;"> As a generalized sensor, the RPC model with its accuracy equally matches the physical sensor model. Moreover, the accurate positioning combining with the flexibility in application leads the RPC model to be the priority in photogrammetry processing. Generally, the RPC model is calculated through a control grid. Different RPC parameters solving methods and the operation efficiency all serve as variables in the accuracy of the model. In this paper, the ridge estimation iterative method, spectrum correction iteration, and conjugate gradient method are employed to solve RPC parameters;the accuracy and efficiency of three solving methods are analyzed and compared. The results show that ridge estimation iterative method and spectrum correction iteration have obvious advantages in accuracy. The ridge estimation iterative method has fewer iteration times and time con-sumption, and spectrum correction iteration has more stable precision. </div> 展开更多
关键词 Rational Polynomial Coefficients (RPC) Ridge Estimation Iterative method Spectrum Correction Iteration Conjugate Gradient method
下载PDF
Ridge estimation iterative solution of ill-posed mixed additive and multiplicative random error model with equality constraints 被引量:3
3
作者 Leyang Wang Tao Chen 《Geodesy and Geodynamics》 CSCD 2021年第5期336-346,共11页
The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the ... The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the mixed additive and multiplicative random error model with equality constraints and derive the weighted least squares iterative solution of the model. In addition, aiming at the ill-posed problem of the coefficient matrix, we also propose the ridge estimation iterative solution of ill-posed mixed additive and multiplicative random error model with equality constraints based on the principle of ridge estimation method and derive the U-curve method to determine the ridge parameter. The experimental results show that the weighted least squares iterative solution can obtain more reasonable parameter estimation and precision information than existing solutions, verifying the feasibility of applying the equality constraints to the mixed additive and multiplicative random error model. Furthermore, the ridge estimation iterative solution can obtain more accurate parameter estimation and precision information than the weighted least squares iterative solution. 展开更多
关键词 Ill-posed problem Mixed additive and multiplicative random error model Equality constraints Weighted least squares Ridge estimation method U-curve method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部