Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt.The Ghadir Shear Belt is a 35 km-long,NW-oriented...Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt.The Ghadir Shear Belt is a 35 km-long,NW-oriented brittleductile shear zone that underwent overall sinistral transpression during the Late Neoproterozoic.Within this shear belt,strain is highly partitioned into shortening,oblique,extensional and strike-slip structures at multiple scales.Moreover,strain partitioning is heterogeneous along-strike giving rise to three distinct structural domains.In the East Ghadir and Ambaut shear belts,the strain is pure-shear dominated whereas the narrow sectors parallel to the shear walls in the West Ghadir Shear Zone are simple-shear dominated.These domains are comparable to splay-dominated and thrust-dominated strike-slip shear zones.The kinematic transition along the Ghadir shear belt is consistent with separate strike-slip and thrustsense shear zones.The earlier fabric(S1),is locally recognized in low strain areas and SW-ward thrusts.S2 is associated with a shallowly plunging stretching lineation(L2),and defines^NW-SE major upright macroscopic folds in the East Ghadir shear belt.F2 folds are superimposed by^NNW–SSE tight-minor and major F3 folds that are kinematically compatible with sinistral transpressional deformation along the West Ghadir Shear Zone and may represent strain partitioning during deformation.F2 and F3 folds are superimposed by ENE–WSW gentle F4 folds in the Ambaut shear belt.The sub-parallelism of F3 and F4 fold axes with the shear zones may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation in fold zones.Dextral ENEstriking shear zones were subsequently active at ca.595 Ma,coeval with sinistral shearing along NW-to NNW-striking shear zones.The occurrence of upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the Ghadir shear belt.Oblique convergence may have been provoked by the buckling of the Hafafit gneiss-cored domes and relative rotations between its segments.Upright folds,fold with vertical axes and sinistral strike-slip shear zones developed in response to strain partitioning.The West Ghadir Shear Zone contains thrusts and strikeslip shear zones that resulted from lateral escape tectonics associated with lateral imbrication and transpression in response to oblique squeezing of the Arabian-Nubian Shield during agglutination of East and West Gondwana.展开更多
The Central Africa Fold Belt(CAFB)is a collision belt endowed with gold deposits in Eastern Cameroon area mined for about 50 years.However,favorable areas for gold exploration are poorly known.This paper presents(1)th...The Central Africa Fold Belt(CAFB)is a collision belt endowed with gold deposits in Eastern Cameroon area mined for about 50 years.However,favorable areas for gold exploration are poorly known.This paper presents(1)the kinematics of the brittle deformation in the Kékem area in the SW portion of the Central Cameroon Shear Zone and(2)constraints gold mineralization events with respect to the collisional evolution of the CAFB.The authors interpret that the conjugate ENE to E and NNW to NW trending lineament corresponds to the synthetic(R)and the antithetic(R’)shears,which accompanied the dextral slip along the NE to ENE striking shear.The latter coincides with the last 570-552 Ma D3 dextral simple shear-dominated transpression,which is parallel to the BétaréOya shear zone hosting gold deposits.Gold mineralizations,which mainly occurred during the last dextral shearing,are disseminated within quartz veins associated to Riedel’s previous structures reactivated due to late collisional activities of the CAFB as brittle deformation.Gold mineralizations occurred mainly during the 570-552 Ma D3 event.The reactivation,which might be due to dextral simple shear during mylonitzation,plausibly remobilized the early gold deposits hosted in syn-compressional rocks and/or possibly focused deep-sourced fluid mixed with those released by dehydration.Therefore,the Central Cameroon Shear Zone where Kékem is located,and which shows similar petrographical and structural features to those controling Batouri gold district,is a target area for gold exploration in Cameroon.展开更多
The work is a vivid description of the structural relationship between brittle deformation of the Precambrian basement in the southern continental part of the Cameroon Line and intrusive Paleozoic and Mesozoic basalt ...The work is a vivid description of the structural relationship between brittle deformation of the Precambrian basement in the southern continental part of the Cameroon Line and intrusive Paleozoic and Mesozoic basalt dykes swarms. A multidisciplinary approach that involves a combination of remote sensing techniques and field studies show that the major trend of brittle structures correspond to well-known regional structures: N70°E (Adamawa Shear Zone), N135°E (upper Benue trend) and N30°E (Cameroon Volcanic Line) corresponding to E-W and N-S directions respectively. Basalt dykes are associated to NE-SW, E-W and NW-SE oriented fractures. An integration of the available information on brittle structures and basalt dykes directions suggest an emplacement of the Mesozoic and Paleozoic basalt dykes structurally controlled by Precambrian structures that were originated through Riedel’s fracture kinematic model with dextral strike-slip Adamawa Shear Zone as the main shear zone during late stage of the Pan-African collision. Spatially, the restriction of the basalt dykes to the corridor of the Adamawa Shear Zone indicate that a rejuvenation of Precambrian faults may very well be the origin of the dykes with possibility that they may have been reworked several times during the Phanerozoic eon.展开更多
The formation conditions and time sequences for various types of wrench-related fractures are not clear. Based on a parabola-type failure criterion, this paper has gotten new insights on those questions. In a simple s...The formation conditions and time sequences for various types of wrench-related fractures are not clear. Based on a parabola-type failure criterion, this paper has gotten new insights on those questions. In a simple shear, the occurrence of either tensional fractures or Riedel shears is controlled by the ratio (Rtc) of tensile strength to cohesion. In a pure shear, the occurrence of either second order tensional fractures or second order Riedel shears is controlled by the ratio (Rtci) of tensile strength to cohesion, given a constant inner frictional coefficient. Where the Rtc or the Rtci is less than a certain value, the en echelon tensional fractures will occur first. Where the Rtc or the Rtci is bigger than the certain value, the Riedel shears will occur first. Where the Rtc or the Rtci is equal to the certain value, the en echelon tensional fractures and the Riedel shears will occur simultaneously. The understandings will enhance the research on wrench related fractures and will be of significance in petroleum exploration and development, because fractures are both important accumulation spaces and key migration paths for oil and gas.展开更多
文摘Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt.The Ghadir Shear Belt is a 35 km-long,NW-oriented brittleductile shear zone that underwent overall sinistral transpression during the Late Neoproterozoic.Within this shear belt,strain is highly partitioned into shortening,oblique,extensional and strike-slip structures at multiple scales.Moreover,strain partitioning is heterogeneous along-strike giving rise to three distinct structural domains.In the East Ghadir and Ambaut shear belts,the strain is pure-shear dominated whereas the narrow sectors parallel to the shear walls in the West Ghadir Shear Zone are simple-shear dominated.These domains are comparable to splay-dominated and thrust-dominated strike-slip shear zones.The kinematic transition along the Ghadir shear belt is consistent with separate strike-slip and thrustsense shear zones.The earlier fabric(S1),is locally recognized in low strain areas and SW-ward thrusts.S2 is associated with a shallowly plunging stretching lineation(L2),and defines^NW-SE major upright macroscopic folds in the East Ghadir shear belt.F2 folds are superimposed by^NNW–SSE tight-minor and major F3 folds that are kinematically compatible with sinistral transpressional deformation along the West Ghadir Shear Zone and may represent strain partitioning during deformation.F2 and F3 folds are superimposed by ENE–WSW gentle F4 folds in the Ambaut shear belt.The sub-parallelism of F3 and F4 fold axes with the shear zones may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation in fold zones.Dextral ENEstriking shear zones were subsequently active at ca.595 Ma,coeval with sinistral shearing along NW-to NNW-striking shear zones.The occurrence of upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the Ghadir shear belt.Oblique convergence may have been provoked by the buckling of the Hafafit gneiss-cored domes and relative rotations between its segments.Upright folds,fold with vertical axes and sinistral strike-slip shear zones developed in response to strain partitioning.The West Ghadir Shear Zone contains thrusts and strikeslip shear zones that resulted from lateral escape tectonics associated with lateral imbrication and transpression in response to oblique squeezing of the Arabian-Nubian Shield during agglutination of East and West Gondwana.
文摘The Central Africa Fold Belt(CAFB)is a collision belt endowed with gold deposits in Eastern Cameroon area mined for about 50 years.However,favorable areas for gold exploration are poorly known.This paper presents(1)the kinematics of the brittle deformation in the Kékem area in the SW portion of the Central Cameroon Shear Zone and(2)constraints gold mineralization events with respect to the collisional evolution of the CAFB.The authors interpret that the conjugate ENE to E and NNW to NW trending lineament corresponds to the synthetic(R)and the antithetic(R’)shears,which accompanied the dextral slip along the NE to ENE striking shear.The latter coincides with the last 570-552 Ma D3 dextral simple shear-dominated transpression,which is parallel to the BétaréOya shear zone hosting gold deposits.Gold mineralizations,which mainly occurred during the last dextral shearing,are disseminated within quartz veins associated to Riedel’s previous structures reactivated due to late collisional activities of the CAFB as brittle deformation.Gold mineralizations occurred mainly during the 570-552 Ma D3 event.The reactivation,which might be due to dextral simple shear during mylonitzation,plausibly remobilized the early gold deposits hosted in syn-compressional rocks and/or possibly focused deep-sourced fluid mixed with those released by dehydration.Therefore,the Central Cameroon Shear Zone where Kékem is located,and which shows similar petrographical and structural features to those controling Batouri gold district,is a target area for gold exploration in Cameroon.
文摘The work is a vivid description of the structural relationship between brittle deformation of the Precambrian basement in the southern continental part of the Cameroon Line and intrusive Paleozoic and Mesozoic basalt dykes swarms. A multidisciplinary approach that involves a combination of remote sensing techniques and field studies show that the major trend of brittle structures correspond to well-known regional structures: N70°E (Adamawa Shear Zone), N135°E (upper Benue trend) and N30°E (Cameroon Volcanic Line) corresponding to E-W and N-S directions respectively. Basalt dykes are associated to NE-SW, E-W and NW-SE oriented fractures. An integration of the available information on brittle structures and basalt dykes directions suggest an emplacement of the Mesozoic and Paleozoic basalt dykes structurally controlled by Precambrian structures that were originated through Riedel’s fracture kinematic model with dextral strike-slip Adamawa Shear Zone as the main shear zone during late stage of the Pan-African collision. Spatially, the restriction of the basalt dykes to the corridor of the Adamawa Shear Zone indicate that a rejuvenation of Precambrian faults may very well be the origin of the dykes with possibility that they may have been reworked several times during the Phanerozoic eon.
文摘The formation conditions and time sequences for various types of wrench-related fractures are not clear. Based on a parabola-type failure criterion, this paper has gotten new insights on those questions. In a simple shear, the occurrence of either tensional fractures or Riedel shears is controlled by the ratio (Rtc) of tensile strength to cohesion. In a pure shear, the occurrence of either second order tensional fractures or second order Riedel shears is controlled by the ratio (Rtci) of tensile strength to cohesion, given a constant inner frictional coefficient. Where the Rtc or the Rtci is less than a certain value, the en echelon tensional fractures will occur first. Where the Rtc or the Rtci is bigger than the certain value, the Riedel shears will occur first. Where the Rtc or the Rtci is equal to the certain value, the en echelon tensional fractures and the Riedel shears will occur simultaneously. The understandings will enhance the research on wrench related fractures and will be of significance in petroleum exploration and development, because fractures are both important accumulation spaces and key migration paths for oil and gas.