期刊文献+
共找到152篇文章
< 1 2 8 >
每页显示 20 50 100
Fast Converging Series for Riemann Zeta Function 被引量:1
1
作者 Hannu Olkkonen Juuso T. Olkkonen 《Open Journal of Discrete Mathematics》 2012年第4期131-133,共3页
Riemann zeta function has a key role in number theory and in its applications. In this paper we present a new fast converging series for . Applications of the series include the computation of the and recursive comput... Riemann zeta function has a key role in number theory and in its applications. In this paper we present a new fast converging series for . Applications of the series include the computation of the and recursive computation of , and generally . We discuss on the production of irrational number sequences e.g. for encryption coding and zeta function maps for analysis and synthesis of log-time sampled signals. 展开更多
关键词 riemann zeta function Converging series NUMBER Theory CRYPTOGRAPHY Signal Processing
下载PDF
Accelerated Series for Riemann Zeta Function at Odd Integer Arguments
2
作者 Juuso T. Olkkonen Hannu Olkkonen 《Open Journal of Discrete Mathematics》 2013年第1期18-20,共3页
Riemann zeta function is an important tool in signal analysis and number theory. Applications of the zeta function include e.g. the generation of irrational and prime numbers. In this work we present a new accelerated... Riemann zeta function is an important tool in signal analysis and number theory. Applications of the zeta function include e.g. the generation of irrational and prime numbers. In this work we present a new accelerated series for Riemann zeta function. As an application we describe the recursive algorithm for computation of the zeta function at odd integer arguments. 展开更多
关键词 riemann zeta function Converging series Number Theory Cryptography Signal Processing COMPRESSIVE Sensing
下载PDF
Determinantal Expressions and Recursive Relations for the Bessel Zeta Function and for a Sequence Originating from a Series Expansion of the Power of Modified Bessel Function of the First Kind
3
作者 Yan Hong Bai-Ni Guo Feng Qi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第10期409-423,共15页
In the paper,by virtue of a general formula for any derivative of the ratio of two differentiable functions,with the aid of a recursive property of the Hessenberg determinants,the authors establish determinantal expre... In the paper,by virtue of a general formula for any derivative of the ratio of two differentiable functions,with the aid of a recursive property of the Hessenberg determinants,the authors establish determinantal expressions and recursive relations for the Bessel zeta function and for a sequence originating from a series expansion of the power of modified Bessel function of the first kind. 展开更多
关键词 Determinantal representation recursive relation series expansion first kind modified Bessel function Bessel zeta function Pochhammer symbol gamma function Hessenberg determinant
下载PDF
Special Values for the Riemann Zeta Function
4
作者 John H. Heinbockel 《Journal of Applied Mathematics and Physics》 2021年第5期1108-1120,共13页
The purpose for this research was to investigate the Riemann zeta function at odd integer values, because there was no simple representation for these results. The research resulted in the closed form expression <i... The purpose for this research was to investigate the Riemann zeta function at odd integer values, because there was no simple representation for these results. The research resulted in the closed form expression <img src="Edit_909dc64a-717a-4477-a9f8-a3b94ab4008e.bmp" alt="" /> for representing the zeta function at the odd integer values 2<em>n</em>+1 for <em>n</em> a positive integer. The above representation shows the zeta function at odd positive integers can be represented in terms of the Euler numbers <em>E</em><sub>2<em>n</em></sub> and the polygamma functions <em>ψ</em><sup>(2<em>n</em>)</sup>(3/4). This is a new result for this study area. For completeness, this paper presents a review of selected properties of the Riemann zeta function together with how these properties are derived. This paper will summarize how to evaluate zeta (n) for all integers n different from 1. Also as a result of this research, one can obtain a closed form expression for the Dirichlet beta series evaluated at positive even integers. The results presented enable one to construct closed form expressions for the Dirichlet eta, lambda and beta series evaluated at odd and even integers. Closed form expressions for Apéry’s constant zeta (3) and Catalan’s constant beta (2) are also presented. 展开更多
关键词 riemann zeta function zeta (2n) zeta (2n + 1) Apéry’s Constant Catalan Constant
下载PDF
Common Properties of Riemann Zeta Function, Bessel Functions and Gauss Function Concerning Their Zeros 被引量:1
5
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2019年第3期281-316,共36页
The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in t... The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in the complex domain by pictures. It can be seen how the zeros in finite approximations approach to the genuine zeros in the transition to higher-order approximation and in case of the Gaussian (bell) function that they go with great uniformity to infinity in the complex plane. A limiting transition from the modified Bessel functions to a Gaussian function is discussed and represented in pictures. In an Appendix a new building stone to a full proof of the Riemann hypothesis using the Second mean-value theorem is presented. 展开更多
关键词 riemann zeta and Xi function Modified BESSEL functions Second Mean-Value THEOREM or Gauss-Bonnet THEOREM riemann Hypothesis
下载PDF
A Standard Method to Prove That the Riemann Zeta Function Equation Has No Non-Trivial Zeros
6
作者 Xiaochun Mei 《Advances in Pure Mathematics》 2020年第2期86-99,共14页
A standard method is proposed to prove strictly that the Riemann Zeta function equation has no non-trivial zeros. The real part and imaginary part of the Riemann Zeta function equation are separated completely. Suppo... A standard method is proposed to prove strictly that the Riemann Zeta function equation has no non-trivial zeros. The real part and imaginary part of the Riemann Zeta function equation are separated completely. Suppose ξ(s) = ξ1(a,b) + iξ2(a,b) = 0 but ζ(s) = ζ1(a,b) + iζ2(a,b) ≠ 0 with s = a + ib at first. By comparing the real part and the imaginary part of Zeta function equation individually, a set of equation about a and b is obtained. It is proved that this equation set only has the solutions of trivial zeros. In order to obtain possible non-trivial zeros, the only way is to suppose that ζ1(a,b) = 0 and ζ2(a,b) = 0. However, by using the compassion method of infinite series, it is proved that ζ1(a,b) ≠ 0 and ζ2(a,b) ≠ 0. So the Riemann Zeta function equation has no non-trivial zeros. The Riemann hypothesis does not hold. 展开更多
关键词 riemann Hypothesis riemann zeta function riemann zeta function EQUATION Jacobi’s function Residue Theorem Cauchy-riemann EQUATION
下载PDF
APPROXIMATION OF CONVEX TYPE FUNCTION BY PARTIAL SUMS OF FOURIER SERIES
7
作者 YuGuohua 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2004年第1期67-76,共10页
The concept of convex type function is introduced in this paper,from which a kin d of convex decomposition approach is proposed.As one of applications of this a pproach,the approximation of the convex type function b... The concept of convex type function is introduced in this paper,from which a kin d of convex decomposition approach is proposed.As one of applications of this a pproach,the approximation of the convex type function by the partial sum of its Fourier series is inves tigated.Moreover,the order of approximation is describe d with the 2th continuous modulus. 展开更多
关键词 Fourier series convex type function CONVEX DECOMPOSITION riemann deriv ative continuous modulus approximation.
下载PDF
On the Absence of Zeros of Riemann Zeta-Function Out of ℜ(z) = 1/2 被引量:1
8
作者 Jorge Julián Sánchez Martínez 《Advances in Pure Mathematics》 2022年第3期178-185,共8页
This work shows, after a brief introduction to Riemann zeta function , the demonstration that all non-trivial zeros of this function lies on the so-called “critical line”,, the one Hardy demonstrated in his famous w... This work shows, after a brief introduction to Riemann zeta function , the demonstration that all non-trivial zeros of this function lies on the so-called “critical line”,, the one Hardy demonstrated in his famous work that infinite countable zeros of the above function can be found on it. Thus, out of this strip, the only remaining zeros of this function are the so-called “trivial ones” . After an analytical introduction reminding the existence of a germ from a generic zero lying in , we show through a Weierstrass-Hadamard representation approach of the above germ that non-trivial zeros out of cannot be found. 展开更多
关键词 riemann zeta function ANALYTICITY Weierstrass-Hadamard Product REPRESENTATION
下载PDF
Modified Double Zeta Function and Its Properties
9
作者 Arif M. Khan 《Advances in Pure Mathematics》 2016年第3期159-167,共9页
The present paper aims at introducing and investigating a new class of generalized double zeta function i.e. modified double zeta function which involves the Riemann, Hurwitz, Hurwitz-Lerch, Barnes double zeta functio... The present paper aims at introducing and investigating a new class of generalized double zeta function i.e. modified double zeta function which involves the Riemann, Hurwitz, Hurwitz-Lerch, Barnes double zeta function and Bin-Saad generalized double zeta function as particular cases. The results are obtained by suitably applying Riemann-Liouville type and Tremblay fractional integral and differential operators. We derive the expansion formula for the proposed function with some of its properties via fractional operators and discuss the link with known results. 展开更多
关键词 Modified zeta function riemann-Liouville Operator Tremblay Fractional Operators Hypergeometric function
下载PDF
一类新的包含Genocchi数与Riemann Zeta函数求和的计算公式 被引量:4
10
作者 李志荣 李映辉 《山东大学学报(理学版)》 CAS CSCD 北大核心 2007年第4期79-83,共5页
利用第二类Stirling数,建立了一类含有Genocchi数与Riemann Zeta函数求和的一般计算公式,推广了已有的结果,改进了有关结论.
关键词 GENOCCHI数 riemann zeta函数 Stifling数 计算公式 恒等式 发生函数
下载PDF
一个联系Riemann Zeta函数的Hilbert型积分不等式 被引量:4
11
作者 杨必成 陈强 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2014年第5期869-872,共4页
通过引入独立参量,应用实分析技巧及权函数方法,建立一个最佳常数因子联系Riemann zeta函数的核为余割函数的Hilbert型积分不等式,并导出了其等价式与特殊参数下的齐次形式.
关键词 权函数 riemann zeta函数 HILBERT型积分不等式 等价式
下载PDF
Riemann zeta函数的收敛区域 被引量:1
12
作者 胡兰英 任永 范金华 《纯粹数学与应用数学》 CSCD 北大核心 2007年第1期87-90,共4页
给出了Riemann zeta函数收敛区域的几种证明.
关键词 riemann zeta函数 收敛域 发散域
下载PDF
关于Smarandache函数与Riemann zeta-函数 被引量:1
13
作者 周焕芹 《纯粹数学与应用数学》 CSCD 北大核心 2008年第1期41-44,共4页
对任意正整数n,著名的Smarandache函数S(n)定义为最小的正整数m使得n|m!.即S(n)=min{m:m∈N,n|m!).本文的主要目的是利用初等方法研究一类包含S(n)的Dirichlet级数与Riemann zeta-函数之间的关系,并得到了一个有趣的恒等式.
关键词 SMARANDACHE函数 riemann zeta-函数 恒等式
下载PDF
Riemann Zeta函数ζ(s)的一种推导方法和证明 被引量:1
14
作者 黑宝骊 陈艳丽 及万会 《河北北方学院学报(自然科学版)》 2015年第3期1-5,共5页
首先应用三角函数、双曲函数以及二者乘积的级数展开式,证明Riemann Zeta函数ζ(s)(s为偶数)时的一系列表达式,并得到一个表达形式较为简单的递推公式;同时应用此方法得到∑∞n=1coth(πz)n4p+3(p为正整数)时的一个递推公式,并应用留数... 首先应用三角函数、双曲函数以及二者乘积的级数展开式,证明Riemann Zeta函数ζ(s)(s为偶数)时的一系列表达式,并得到一个表达形式较为简单的递推公式;同时应用此方法得到∑∞n=1coth(πz)n4p+3(p为正整数)时的一个递推公式,并应用留数基本定理逐一证明。 展开更多
关键词 riemann zeta函数 双曲函数的级数 留数定理
下载PDF
Riemann Zeta函数ξ(2t)(t为正整数)的一个递归公式 被引量:2
15
作者 缪雪峰 《福建教育学院学报》 2004年第7期122-123,共2页
本文利用Fourier级数理论得到Riemann Zela函数ξ(s)在s为偶数时的一个递归公式。
关键词 riemann zeta函数 FOURIER系数 FOURIER级数 数学归纳法 递归公式
下载PDF
Two Theorems on the Zero Density of the Riemann Zeta Function
16
作者 张益唐 《Acta Mathematica Sinica,English Series》 SCIE 1985年第3期274-285,共12页
§1.IntroductionLet N(σ,T) be the number of zeros of the Riemann zeta funetion ζ(s) in theregion σ≤Re(s)≤1,|Im(s)|≤T.For σ>(3/4),by using the Halász-Montgomerymethod,one can get somo results which a... §1.IntroductionLet N(σ,T) be the number of zeros of the Riemann zeta funetion ζ(s) in theregion σ≤Re(s)≤1,|Im(s)|≤T.For σ>(3/4),by using the Halász-Montgomerymethod,one can get somo results which are better than the classical result givenby Ingham.For example,Jutila proved that the zero density hypothesisN(σ,T)T2-3σ+ 展开更多
关键词 Two Theorems on the Zero Density of the riemann zeta function TH
原文传递
一类包含Riemann Zeta函数的求和公式
17
作者 马韵新 雒秋明 《洛阳师范学院学报》 2004年第2期13-14,共2页
本文给出了一类包含RiemannZeta函数的求和计算公式 .
关键词 riemann zeta函数 级数 无穷积分 求和公式
下载PDF
一类包含Riemann Zeta函数的求和公式及其估值
18
作者 雒秋明 郭田芬 《安阳师范学院学报》 2004年第2期1-2,共2页
本文给出了一类包含RiemannZeta函数的求和计算公式及其估值。
关键词 riemann zeta函数 级数 无穷积分 估值.
下载PDF
Riemann Zeta函数ζ(2n+1)的2个新的表达式
19
作者 黄炜 《海南大学学报(自然科学版)》 CAS 2012年第1期1-6,共6页
主要研究了ζ函数的表示形式,通过初等及解析的研究方法,给出了关于Riemann Zeta函数ζ(2n+1)的2个新的表达式.
关键词 riemann zeta函数 初等及解析方法 级数和 收敛
下载PDF
一类包含Riemann Zeta函数的求和公式
20
作者 雒秋明 安春香 《商丘师范学院学报》 CAS 2005年第2期46-48,共3页
应用广义Dirichlet积分公式得到了一类包含RiemannZeta函数的求和计算公式.
关键词 DIRICHLET积分 riemann zeta函数 求和公式
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部