A pseudo-real Riemann surface admits anticonformal automorphisms but no anticonformal involution.We obtain the classifcation of actions and groups of automorphisms of pseudo-real Riemann surfaces of genera 2,3 and 4.F...A pseudo-real Riemann surface admits anticonformal automorphisms but no anticonformal involution.We obtain the classifcation of actions and groups of automorphisms of pseudo-real Riemann surfaces of genera 2,3 and 4.For instance the automorphism group of a pseudo-real Riemann surface of genus 4 is eitherC4orC8or the Fro¨benius group of order 20,and in the case ofC4there are exactly two possible topological actions.Let MK P R,g be the set of surfaces in the moduli space MK g corresponding to pseudo-real Riemann surfaces.We obtain the equisymmetric stratifcation of MK P R,g for generag=2,3,4,and as a consequence we have that MK P R,gis connected forg=2,3 but MK P R,4has three connected components.展开更多
A Riemann surface S having field of moduli M,but not a field of definition,is called pseudo-real.This means that S has anticonformal automorphisms,but none of them is an involution.A Riemann surface is said to be plan...A Riemann surface S having field of moduli M,but not a field of definition,is called pseudo-real.This means that S has anticonformal automorphisms,but none of them is an involution.A Riemann surface is said to be plane if it can be described by a smooth plane model of some degree d≥4 in P^2/C.We characterize pseudo-real-plane Riemann surfaces»S,whose conformal automorphism group Aut+(S)is PGL3(C)-conjugate to a finite non-trivial group that leaves invariant infinitely many points of P^2/C.In particular,we show that such pseudo-real-plane Riemann surfaces exist only if Aut+(S)is cyclic of even order n dividing the degree d.Explicit families of pseudo-reai-plane Riemann surfaces are given for any degree d=2pm with m>1 odd,p prime and n=d/p.展开更多
基金Supported by Spanish Government Research(Grant No.MTM2011-23092)
文摘A pseudo-real Riemann surface admits anticonformal automorphisms but no anticonformal involution.We obtain the classifcation of actions and groups of automorphisms of pseudo-real Riemann surfaces of genera 2,3 and 4.For instance the automorphism group of a pseudo-real Riemann surface of genus 4 is eitherC4orC8or the Fro¨benius group of order 20,and in the case ofC4there are exactly two possible topological actions.Let MK P R,g be the set of surfaces in the moduli space MK g corresponding to pseudo-real Riemann surfaces.We obtain the equisymmetric stratifcation of MK P R,g for generag=2,3,4,and as a consequence we have that MK P R,gis connected forg=2,3 but MK P R,4has three connected components.
文摘A Riemann surface S having field of moduli M,but not a field of definition,is called pseudo-real.This means that S has anticonformal automorphisms,but none of them is an involution.A Riemann surface is said to be plane if it can be described by a smooth plane model of some degree d≥4 in P^2/C.We characterize pseudo-real-plane Riemann surfaces»S,whose conformal automorphism group Aut+(S)is PGL3(C)-conjugate to a finite non-trivial group that leaves invariant infinitely many points of P^2/C.In particular,we show that such pseudo-real-plane Riemann surfaces exist only if Aut+(S)is cyclic of even order n dividing the degree d.Explicit families of pseudo-reai-plane Riemann surfaces are given for any degree d=2pm with m>1 odd,p prime and n=d/p.