Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have ...Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.展开更多
The theory of integration to mathematical analysis is so important that many mathematicians continue to develop new theory to enlarge the class of integrable functions and simplify the Lebesgue theory integration. In ...The theory of integration to mathematical analysis is so important that many mathematicians continue to develop new theory to enlarge the class of integrable functions and simplify the Lebesgue theory integration. In this paper, by slight modifying the definition of the Henstock integral which was introduced by Jaroslav Kurzweil and Ralph Henstock, we present a new definition of integral on fractal sets. Furthermore, its integrability has been discussed, and the relationship between differentiation and integral is also established. As an example, the integral of Cantor function on Cantor set is calculated.展开更多
By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the res...By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the results to the research concerning the boundness, uniqueness and continuous dependence on the initial for solutions to certain fractional differential equations.展开更多
Algorithm for Laplace ′s integral is given when the inverse image function has high order discontinui ty. The multi-node technique of B-spline is used to describe the interruption point, cusp and non-smooth point of...Algorithm for Laplace ′s integral is given when the inverse image function has high order discontinui ty. The multi-node technique of B-spline is used to describe the interruption point, cusp and non-smooth point of the inverse image function. The difference quotient and de Boor algorithm are used to derive the image function of the Lapl ace′s integral under non-uniform partition. And a set of practical formula is got when the partition is quasi-uniform. The scheme enables the image function to be approximated within any prescribed tolerance. Experiments also show that g ood result is achieved. It is much faster than that of Simpsons rule, and much s impler than that of Berge method, the traditional efficient method. It is no lon ger to find the zero points and coefficients of Gauss-Laguerre or Gauss-Legend re polynomials. The image function of Laplace′s integral can also be computed while the inverse image function is hyper-function with high order discontinuity.展开更多
In this article, the authors give a typical integral's bidirectional estimates for allcases. At the same time, several equivalent characterizations on the F(p, q, s, k) space in theunit ball of Cn are given.
In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary.
The solutions of the nonlinear singular integral equation , t 6 L, are considered, where L is a closed contour in the complex plane, b ≠ 0 is a constant and f(t) is a polynomial. It is an extension of the results obt...The solutions of the nonlinear singular integral equation , t 6 L, are considered, where L is a closed contour in the complex plane, b ≠ 0 is a constant and f(t) is a polynomial. It is an extension of the results obtained in [1] when f(t) is a constant. Certain special cases are illustrated.展开更多
In the paper, the authors find some new inequalities of Hermite-Hadamard type for functions whose third derivatives are s-convex and apply these inequalities to discover inequalities for special means.
This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a disc...This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a discrete analogue of theorem of Noether in the calculus of variations. An example is given to illustrate the application of the results.展开更多
The normal and anomalous Green's functions of antiferromagnetie state in three-band Hubbard model are studied by using functional integrals and temperature Green's function method. The equations of energy spectrum a...The normal and anomalous Green's functions of antiferromagnetie state in three-band Hubbard model are studied by using functional integrals and temperature Green's function method. The equations of energy spectrum are derived. In addition, excitation energy of Fermi fields are calculated under long wave approximation.展开更多
In this paper, by introducing some parameters and estimating the weight coefficient, we give a new Hilbert’s inequality with the integral in whole plane and with a non-homogeneous and the equivalent form is given as ...In this paper, by introducing some parameters and estimating the weight coefficient, we give a new Hilbert’s inequality with the integral in whole plane and with a non-homogeneous and the equivalent form is given as well. The best constant factor is calculated by the way of Complex Analysis.展开更多
In this paper,some kinds of singular integral equations of convolution type with reflection and translation shift are discussed and they are turned into Riemann boundary value problems with both discontinuous coeffici...In this paper,some kinds of singular integral equations of convolution type with reflection and translation shift are discussed and they are turned into Riemann boundary value problems with both discontinuous coefficients and reflection by using the Fourier transform.In spite of the classical method for solution,we are to give another method,therefore the general solution and condition of solvability are obtained in class{0}.展开更多
In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results a...In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.展开更多
In the paper, we establish the LP(Rn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution {(y,γ(|y|), y ∈ Rn} with rough kernels. We also give several applications o...In the paper, we establish the LP(Rn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution {(y,γ(|y|), y ∈ Rn} with rough kernels. We also give several applications of this inequality.展开更多
In this article, we extend some estimates of the right-hand side of the Hermite-Hadamard type inequality for preinvex functions with fractional integral.The notion of logarithmically s-Godunova-Levin-preinvex function...In this article, we extend some estimates of the right-hand side of the Hermite-Hadamard type inequality for preinvex functions with fractional integral.The notion of logarithmically s-Godunova-Levin-preinvex function in second sense is introduced and then a new Herrnite-Hadarnard inequality is derived for the class of logarithmically s-Godunova-Levin-preinvex function.展开更多
In this article, we study the reverse HSlder type inequality and HSlder inequality in two dimensional case on time scales. We also obtain many integral inequalities by using HSlder inequalities on time scales which gi...In this article, we study the reverse HSlder type inequality and HSlder inequality in two dimensional case on time scales. We also obtain many integral inequalities by using HSlder inequalities on time scales which give Hardy's inequalities as spacial cases.展开更多
The high-precision local geoid model was computed based on the improved Stokes-Helmert0 s boundary value problem and strict integrals of topographic effects. This proposed method involves three steps.First, the mathem...The high-precision local geoid model was computed based on the improved Stokes-Helmert0 s boundary value problem and strict integrals of topographic effects. This proposed method involves three steps.First, the mathematical form of Stokes-Helmert0 s boundary value problem was derived, and strict computational formulas regarding topographic effects were provided to overcome the disadvantage of planar approximations. Second, a gravimetric geoid model was constructed using the proposed StokesHelmert0 s scheme with a heterogeneous data set. Third, a least squares adjustment method combined with a multi-surface function model was employed to remove the bias between the gravimetric geoid model and the GNSS/leveling data and to refine the final local geoid model. The accuracy of the final geoid model was evaluated using independent GNSS/leveling data. Numerical results show that an external precision of 1.45 cm is achievable.展开更多
The existence of continuous solutions for fractional integral inclusion via its singlevalued problem and fixed point theorem for set-valued function in locally convex topological spaces is discussed. The proof of the ...The existence of continuous solutions for fractional integral inclusion via its singlevalued problem and fixed point theorem for set-valued function in locally convex topological spaces is discussed. The proof of the single-valued problem will be based on the Leray- Schauder fixed point theorem. Moreover, the controllability of this solution is studied.展开更多
In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomi...In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2].展开更多
文摘Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.
文摘The theory of integration to mathematical analysis is so important that many mathematicians continue to develop new theory to enlarge the class of integrable functions and simplify the Lebesgue theory integration. In this paper, by slight modifying the definition of the Henstock integral which was introduced by Jaroslav Kurzweil and Ralph Henstock, we present a new definition of integral on fractal sets. Furthermore, its integrability has been discussed, and the relationship between differentiation and integral is also established. As an example, the integral of Cantor function on Cantor set is calculated.
文摘By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the results to the research concerning the boundness, uniqueness and continuous dependence on the initial for solutions to certain fractional differential equations.
文摘Algorithm for Laplace ′s integral is given when the inverse image function has high order discontinui ty. The multi-node technique of B-spline is used to describe the interruption point, cusp and non-smooth point of the inverse image function. The difference quotient and de Boor algorithm are used to derive the image function of the Lapl ace′s integral under non-uniform partition. And a set of practical formula is got when the partition is quasi-uniform. The scheme enables the image function to be approximated within any prescribed tolerance. Experiments also show that g ood result is achieved. It is much faster than that of Simpsons rule, and much s impler than that of Berge method, the traditional efficient method. It is no lon ger to find the zero points and coefficients of Gauss-Laguerre or Gauss-Legend re polynomials. The image function of Laplace′s integral can also be computed while the inverse image function is hyper-function with high order discontinuity.
基金supported by the National Natural Science Foundation of China(11571104)the Hunan Provincial Innovation Foundation for Postgraduate(CX2017B220)Supported by the Construct Program of the Key Discipline in Hunan Province
文摘In this article, the authors give a typical integral's bidirectional estimates for allcases. At the same time, several equivalent characterizations on the F(p, q, s, k) space in theunit ball of Cn are given.
文摘In this paper, we establish several inequalities for some differantiable mappings that are connected with the Riemann-Liouville fractional integrals. The analysis used in the proofs is fairly elementary.
文摘The solutions of the nonlinear singular integral equation , t 6 L, are considered, where L is a closed contour in the complex plane, b ≠ 0 is a constant and f(t) is a polynomial. It is an extension of the results obtained in [1] when f(t) is a constant. Certain special cases are illustrated.
文摘In the paper, the authors find some new inequalities of Hermite-Hadamard type for functions whose third derivatives are s-convex and apply these inequalities to discover inequalities for special means.
基金Project partially supported by the National Natural Science Foundation of China (Grant No 10172056) and the Science Research of the Education Bureau of Anhui Province, China (Grant No 2006KJ263B). Acknowledgement We wish to thank the referees for their careful reading of the manuscript and their useful remarks which helped us to improve the quality of this paper.
文摘This paper shows that first integrals of discrete equation of motion for Birkhoff systems can be determined explicitly by investigating the invariance properties of the discrete Pfaffian. The result obtained is a discrete analogue of theorem of Noether in the calculus of variations. An example is given to illustrate the application of the results.
基金supported by the Natural Science Foundation of Sichuan Normal University
文摘The normal and anomalous Green's functions of antiferromagnetie state in three-band Hubbard model are studied by using functional integrals and temperature Green's function method. The equations of energy spectrum are derived. In addition, excitation energy of Fermi fields are calculated under long wave approximation.
文摘In this paper, by introducing some parameters and estimating the weight coefficient, we give a new Hilbert’s inequality with the integral in whole plane and with a non-homogeneous and the equivalent form is given as well. The best constant factor is calculated by the way of Complex Analysis.
基金Supported by the Qufu Normal University Youth Fund(XJ201218)
文摘In this paper,some kinds of singular integral equations of convolution type with reflection and translation shift are discussed and they are turned into Riemann boundary value problems with both discontinuous coefficients and reflection by using the Fourier transform.In spite of the classical method for solution,we are to give another method,therefore the general solution and condition of solvability are obtained in class{0}.
文摘In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.
基金Supported by the National Natural Science Foundation of China(10931001, 10871173)
文摘In the paper, we establish the LP(Rn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution {(y,γ(|y|), y ∈ Rn} with rough kernels. We also give several applications of this inequality.
基金The Key Scientific and Technological Innovation Team Project(2014KCT-15)in Shaanxi Province
文摘In this article, we extend some estimates of the right-hand side of the Hermite-Hadamard type inequality for preinvex functions with fractional integral.The notion of logarithmically s-Godunova-Levin-preinvex function in second sense is introduced and then a new Herrnite-Hadarnard inequality is derived for the class of logarithmically s-Godunova-Levin-preinvex function.
文摘In this article, we study the reverse HSlder type inequality and HSlder inequality in two dimensional case on time scales. We also obtain many integral inequalities by using HSlder inequalities on time scales which give Hardy's inequalities as spacial cases.
基金sponsored by the National Natural Science Foundation of China (No. 41504012)
文摘The high-precision local geoid model was computed based on the improved Stokes-Helmert0 s boundary value problem and strict integrals of topographic effects. This proposed method involves three steps.First, the mathematical form of Stokes-Helmert0 s boundary value problem was derived, and strict computational formulas regarding topographic effects were provided to overcome the disadvantage of planar approximations. Second, a gravimetric geoid model was constructed using the proposed StokesHelmert0 s scheme with a heterogeneous data set. Third, a least squares adjustment method combined with a multi-surface function model was employed to remove the bias between the gravimetric geoid model and the GNSS/leveling data and to refine the final local geoid model. The accuracy of the final geoid model was evaluated using independent GNSS/leveling data. Numerical results show that an external precision of 1.45 cm is achievable.
文摘The existence of continuous solutions for fractional integral inclusion via its singlevalued problem and fixed point theorem for set-valued function in locally convex topological spaces is discussed. The proof of the single-valued problem will be based on the Leray- Schauder fixed point theorem. Moreover, the controllability of this solution is studied.
文摘In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2].