Riemann (1859) had proved four theorems: analytic continuation ζ(s), functional equation ξ(z)=G(s)ζ(s)(s=1/2+iz, z=t−i(σ−1/2)), product expression ξ1(z)and Riemann-Siegel formula Z(z), and proposed Riemann conjec...Riemann (1859) had proved four theorems: analytic continuation ζ(s), functional equation ξ(z)=G(s)ζ(s)(s=1/2+iz, z=t−i(σ−1/2)), product expression ξ1(z)and Riemann-Siegel formula Z(z), and proposed Riemann conjecture (RC): All roots of ξ(z)are real. We have calculated ξand ζ, and found that ξ(z)is alternative oscillation, which intuitively implies RC, and the property of ζ(s)is not good. Therefore Riemann’s direction is correct, but he used the same notation ξ(t)=ξ1(t)to confuse two concepts. So the product expression only can be used in contraction. We find that if ξhas complex roots, then its structure is destroyed, so RC holds. In our proof, using Riemann’s four theorems is sufficient, needn’t cite other results. Hilbert (1900) proposed Riemann hypothesis (RH): The non-trivial roots of ζhave real part 1/2. Of course, RH also holds, but can not be proved directly by ζ(s).展开更多
The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding ...The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding transversality conditions are given. Secondly, from special to general forms, Noether's theorems of a standard Birhoffian system are given, which provide an approach and theoretical basis for the further research on the Noether symmetry of the fractional Birkhoffian system. Thirdly, the invariances of the fractional Pfaffian action under a special one-parameter group of infinitesimal transformations without transforming the time and a general one-parameter group of infinitesimal transformations with transforming the time are studied, respectively, and the corresponding Noether's theorems are established. Finally, an example is given to illustrate the application of the results.展开更多
This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, B...This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, BMOA and Q8 spaces. The boundedness and compactness of these operators on F(p, q, s) spaces are characterized by means of an embedding theorem, i.e., F(p,q, s) spaces boundedly embedded into the tent-type spaces Tp,s^∞(μ)展开更多
A standard method is proposed to prove strictly that the Riemann Zeta function equation has no non-trivial zeros. The real part and imaginary part of the Riemann Zeta function equation are separated completely. Suppo...A standard method is proposed to prove strictly that the Riemann Zeta function equation has no non-trivial zeros. The real part and imaginary part of the Riemann Zeta function equation are separated completely. Suppose ξ(s) = ξ1(a,b) + iξ2(a,b) = 0 but ζ(s) = ζ1(a,b) + iζ2(a,b) ≠ 0 with s = a + ib at first. By comparing the real part and the imaginary part of Zeta function equation individually, a set of equation about a and b is obtained. It is proved that this equation set only has the solutions of trivial zeros. In order to obtain possible non-trivial zeros, the only way is to suppose that ζ1(a,b) = 0 and ζ2(a,b) = 0. However, by using the compassion method of infinite series, it is proved that ζ1(a,b) ≠ 0 and ζ2(a,b) ≠ 0. So the Riemann Zeta function equation has no non-trivial zeros. The Riemann hypothesis does not hold.展开更多
Riemann Hypothesis was posed by Riemann in early 50’s of the 19th century in his thesis titled “The Number of Primes less than a Given Number”. It is one of the unsolved “Supper” problems of mathematics. The Riem...Riemann Hypothesis was posed by Riemann in early 50’s of the 19th century in his thesis titled “The Number of Primes less than a Given Number”. It is one of the unsolved “Supper” problems of mathematics. The Riemann Hypothesis is closely related to the well-known Prime Number Theorem. The Riemann Hypothesis states that all the nontrivial zeros of the zeta-function lie on the “critical line” . In this paper, we use Nevanlinna’s Second Main Theorem in the value distribution theory, refute the Riemann Hypothesis. In reference [7], we have already given a proof of refute the Riemann Hypothesis. In this paper, we gave out the second proof, please read the reference.展开更多
A Simple Mathematical Solutions to Beal’s Conjecture and Fermat’s Marginal Conjecture in his diary notes, Group Theoretical and Calculus Solutions to Fermat’s Last theorem & Integral Solution to Riemann Hypothe...A Simple Mathematical Solutions to Beal’s Conjecture and Fermat’s Marginal Conjecture in his diary notes, Group Theoretical and Calculus Solutions to Fermat’s Last theorem & Integral Solution to Riemann Hypothesis are discussed.展开更多
In this research we are going to define two new concepts: a) “The Potential of Events” (EP) and b) “The Catholic Information” (CI). The term CI derives from the ancient Greek language and declares all the Catholic...In this research we are going to define two new concepts: a) “The Potential of Events” (EP) and b) “The Catholic Information” (CI). The term CI derives from the ancient Greek language and declares all the Catholic (general) Logical Propositions (<img src="Edit_5f13a4a5-abc6-4bc5-9e4c-4ff981627b2a.png" width="33" height="21" alt="" />) which will true for every element of a set A. We will study the Riemann Hypothesis in two stages: a) By using the EP we will prove that the distribution of events e (even) and o (odd) of Square Free Numbers (SFN) on the axis Ax(N) of naturals is Heads-Tails (H-T) type. b) By using the CI we will explain the way that the distribution of prime numbers can be correlated with the non-trivial zeros of the function <em>ζ</em>(<em>s</em>) of Riemann. The Introduction and the Chapter 2 are necessary for understanding the solution. In the Chapter 3 we will present a simple method of forecasting in many very useful applications (e.g. financial, technological, medical, social, etc) developing a generalization of this new, proven here, theory which we finally apply to the solution of RH. The following Introduction as well the Results with the Discussion at the end shed light about the possibility of the proof of all the above. The article consists of 9 chapters that are numbered by 1, 2, …, 9.展开更多
The purpose for this research was to investigate the Riemann zeta function at odd integer values, because there was no simple representation for these results. The research resulted in the closed form expression <i...The purpose for this research was to investigate the Riemann zeta function at odd integer values, because there was no simple representation for these results. The research resulted in the closed form expression <img src="Edit_909dc64a-717a-4477-a9f8-a3b94ab4008e.bmp" alt="" /> for representing the zeta function at the odd integer values 2<em>n</em>+1 for <em>n</em> a positive integer. The above representation shows the zeta function at odd positive integers can be represented in terms of the Euler numbers <em>E</em><sub>2<em>n</em></sub> and the polygamma functions <em>ψ</em><sup>(2<em>n</em>)</sup>(3/4). This is a new result for this study area. For completeness, this paper presents a review of selected properties of the Riemann zeta function together with how these properties are derived. This paper will summarize how to evaluate zeta (n) for all integers n different from 1. Also as a result of this research, one can obtain a closed form expression for the Dirichlet beta series evaluated at positive even integers. The results presented enable one to construct closed form expressions for the Dirichlet eta, lambda and beta series evaluated at odd and even integers. Closed form expressions for Apéry’s constant zeta (3) and Catalan’s constant beta (2) are also presented.展开更多
In this paper,we discussed the local integral solution operators of imhomogeneous Cauchy Riemann equations on an open set with piecewise C k boundary in C n,as a generalization of the solution opertators for Leray map...In this paper,we discussed the local integral solution operators of imhomogeneous Cauchy Riemann equations on an open set with piecewise C k boundary in C n,as a generalization of the solution opertators for Leray map S(z,ζ) which do not depends holomorphic on z∈D in Koppelman formula is obtained and the L s norm estimates for the solution operators are the same as that [10] in forms.展开更多
Let Δ(x) and E(t) denote respectively the remainder terms in the Dirichlet divisor problem and the mean square formula for the Riemann zeta-function on the critical line.This article is a survey of recent development...Let Δ(x) and E(t) denote respectively the remainder terms in the Dirichlet divisor problem and the mean square formula for the Riemann zeta-function on the critical line.This article is a survey of recent developments on the research of these famous error terms in number theory.These include upper bounds,Ω-results,sign changes,moments and distribution,etc.A few open problems are also discussed.展开更多
Ⅰ. INTRODUCTION For any complex number s, let ζ(s)denote Riemann zeta-function defined by ζ(s)=sum from n=1 to ∞ 1/n^s for Re (s)】1 and by its analytic continuation. The main purpose of this report is to study th...Ⅰ. INTRODUCTION For any complex number s, let ζ(s)denote Riemann zeta-function defined by ζ(s)=sum from n=1 to ∞ 1/n^s for Re (s)】1 and by its analytic continuation. The main purpose of this report is to study the calculating problems of summation:展开更多
文摘Riemann (1859) had proved four theorems: analytic continuation ζ(s), functional equation ξ(z)=G(s)ζ(s)(s=1/2+iz, z=t−i(σ−1/2)), product expression ξ1(z)and Riemann-Siegel formula Z(z), and proposed Riemann conjecture (RC): All roots of ξ(z)are real. We have calculated ξand ζ, and found that ξ(z)is alternative oscillation, which intuitively implies RC, and the property of ζ(s)is not good. Therefore Riemann’s direction is correct, but he used the same notation ξ(t)=ξ1(t)to confuse two concepts. So the product expression only can be used in contraction. We find that if ξhas complex roots, then its structure is destroyed, so RC holds. In our proof, using Riemann’s four theorems is sufficient, needn’t cite other results. Hilbert (1900) proposed Riemann hypothesis (RH): The non-trivial roots of ζhave real part 1/2. Of course, RH also holds, but can not be proved directly by ζ(s).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10972151 and 11272227the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(Grant No.CXZZ11 0949)
文摘The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding transversality conditions are given. Secondly, from special to general forms, Noether's theorems of a standard Birhoffian system are given, which provide an approach and theoretical basis for the further research on the Noether symmetry of the fractional Birkhoffian system. Thirdly, the invariances of the fractional Pfaffian action under a special one-parameter group of infinitesimal transformations without transforming the time and a general one-parameter group of infinitesimal transformations with transforming the time are studied, respectively, and the corresponding Noether's theorems are established. Finally, an example is given to illustrate the application of the results.
基金Supported in part by the National Natural Science Foundation of China(11271359)the Fundamental Research Funds for the Central Universities(2014-Ia-037and 2015-IVA-069)
文摘This paper is devoted to characterizing the Riemann-Stieltjes operators and pointwise multipliers on F(p, q, s) spaces in the unit ball of C^n which contain many classical function spaces, such as the Bloch space, BMOA and Q8 spaces. The boundedness and compactness of these operators on F(p, q, s) spaces are characterized by means of an embedding theorem, i.e., F(p,q, s) spaces boundedly embedded into the tent-type spaces Tp,s^∞(μ)
文摘A standard method is proposed to prove strictly that the Riemann Zeta function equation has no non-trivial zeros. The real part and imaginary part of the Riemann Zeta function equation are separated completely. Suppose ξ(s) = ξ1(a,b) + iξ2(a,b) = 0 but ζ(s) = ζ1(a,b) + iζ2(a,b) ≠ 0 with s = a + ib at first. By comparing the real part and the imaginary part of Zeta function equation individually, a set of equation about a and b is obtained. It is proved that this equation set only has the solutions of trivial zeros. In order to obtain possible non-trivial zeros, the only way is to suppose that ζ1(a,b) = 0 and ζ2(a,b) = 0. However, by using the compassion method of infinite series, it is proved that ζ1(a,b) ≠ 0 and ζ2(a,b) ≠ 0. So the Riemann Zeta function equation has no non-trivial zeros. The Riemann hypothesis does not hold.
文摘Riemann Hypothesis was posed by Riemann in early 50’s of the 19th century in his thesis titled “The Number of Primes less than a Given Number”. It is one of the unsolved “Supper” problems of mathematics. The Riemann Hypothesis is closely related to the well-known Prime Number Theorem. The Riemann Hypothesis states that all the nontrivial zeros of the zeta-function lie on the “critical line” . In this paper, we use Nevanlinna’s Second Main Theorem in the value distribution theory, refute the Riemann Hypothesis. In reference [7], we have already given a proof of refute the Riemann Hypothesis. In this paper, we gave out the second proof, please read the reference.
文摘A Simple Mathematical Solutions to Beal’s Conjecture and Fermat’s Marginal Conjecture in his diary notes, Group Theoretical and Calculus Solutions to Fermat’s Last theorem & Integral Solution to Riemann Hypothesis are discussed.
文摘In this research we are going to define two new concepts: a) “The Potential of Events” (EP) and b) “The Catholic Information” (CI). The term CI derives from the ancient Greek language and declares all the Catholic (general) Logical Propositions (<img src="Edit_5f13a4a5-abc6-4bc5-9e4c-4ff981627b2a.png" width="33" height="21" alt="" />) which will true for every element of a set A. We will study the Riemann Hypothesis in two stages: a) By using the EP we will prove that the distribution of events e (even) and o (odd) of Square Free Numbers (SFN) on the axis Ax(N) of naturals is Heads-Tails (H-T) type. b) By using the CI we will explain the way that the distribution of prime numbers can be correlated with the non-trivial zeros of the function <em>ζ</em>(<em>s</em>) of Riemann. The Introduction and the Chapter 2 are necessary for understanding the solution. In the Chapter 3 we will present a simple method of forecasting in many very useful applications (e.g. financial, technological, medical, social, etc) developing a generalization of this new, proven here, theory which we finally apply to the solution of RH. The following Introduction as well the Results with the Discussion at the end shed light about the possibility of the proof of all the above. The article consists of 9 chapters that are numbered by 1, 2, …, 9.
文摘The purpose for this research was to investigate the Riemann zeta function at odd integer values, because there was no simple representation for these results. The research resulted in the closed form expression <img src="Edit_909dc64a-717a-4477-a9f8-a3b94ab4008e.bmp" alt="" /> for representing the zeta function at the odd integer values 2<em>n</em>+1 for <em>n</em> a positive integer. The above representation shows the zeta function at odd positive integers can be represented in terms of the Euler numbers <em>E</em><sub>2<em>n</em></sub> and the polygamma functions <em>ψ</em><sup>(2<em>n</em>)</sup>(3/4). This is a new result for this study area. For completeness, this paper presents a review of selected properties of the Riemann zeta function together with how these properties are derived. This paper will summarize how to evaluate zeta (n) for all integers n different from 1. Also as a result of this research, one can obtain a closed form expression for the Dirichlet beta series evaluated at positive even integers. The results presented enable one to construct closed form expressions for the Dirichlet eta, lambda and beta series evaluated at odd and even integers. Closed form expressions for Apéry’s constant zeta (3) and Catalan’s constant beta (2) are also presented.
文摘In this paper,we discussed the local integral solution operators of imhomogeneous Cauchy Riemann equations on an open set with piecewise C k boundary in C n,as a generalization of the solution opertators for Leray map S(z,ζ) which do not depends holomorphic on z∈D in Koppelman formula is obtained and the L s norm estimates for the solution operators are the same as that [10] in forms.
文摘Let Δ(x) and E(t) denote respectively the remainder terms in the Dirichlet divisor problem and the mean square formula for the Riemann zeta-function on the critical line.This article is a survey of recent developments on the research of these famous error terms in number theory.These include upper bounds,Ω-results,sign changes,moments and distribution,etc.A few open problems are also discussed.
基金Project supported by the National Natural Science Foundation of China
文摘Ⅰ. INTRODUCTION For any complex number s, let ζ(s)denote Riemann zeta-function defined by ζ(s)=sum from n=1 to ∞ 1/n^s for Re (s)】1 and by its analytic continuation. The main purpose of this report is to study the calculating problems of summation: