An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for ...An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for two special cases, i.e., a continued seep- age flow with a monotone percolation coefficient and a seepage flow with the fractional Neumann boundary condition. The accuracy and efficiency of the method are checked with two numerical examples.展开更多
Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order tim...Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.展开更多
In this paper, we investigate the existence of positive solutions for a class of nonlinear q-fractional boundary value problem. By using some fixed point theorems on cone, some existence results of positive solutions ...In this paper, we investigate the existence of positive solutions for a class of nonlinear q-fractional boundary value problem. By using some fixed point theorems on cone, some existence results of positive solutions are obtained.展开更多
In this paper, we approximate the solution to time-fractional telegraph equation by two kinds of difference methods: the Grünwald formula and Caputo fractional difference.
Let,. We study the existence and multiple positive solutions of n-th nonlinear discrete fractional boundary value problem of the form By using a fixed-point theorem on cone, the parameter intervals of problem is estab...Let,. We study the existence and multiple positive solutions of n-th nonlinear discrete fractional boundary value problem of the form By using a fixed-point theorem on cone, the parameter intervals of problem is established.展开更多
The fractional Feynman-Kac equations describe the distributions of functionals of non-Brownian motion, or anomalous diffusion, including two types called the forward and backward fractional Feynman-Kac equations, wher...The fractional Feynman-Kac equations describe the distributions of functionals of non-Brownian motion, or anomalous diffusion, including two types called the forward and backward fractional Feynman-Kac equations, where the nonlocal time-space coupled fractional substantial derivative is involved. This paper focuses on the more widely used backward version. Based on the newly proposed approximation operators for fractional substantial derivative, we establish compact finite difference schemes for the backward fractional Feynman-Kac equation. The proposed difference schemes have the q-th(q = 1, 2, 3, 4) order accuracy in temporal direction and fourth order accuracy in spatial direction, respectively. The numerical stability and convergence in the maximum norm are proved for the first order time discretization scheme by the discrete energy method, where an inner product in complex space is introduced. Finally, extensive numerical experiments are carried out to verify the availability and superiority of the algorithms. Also, simulations of the backward fractional Feynman-Kac equation with Dirac delta function as the initial condition are performed to further confirm the effectiveness of the proposed methods.展开更多
The purpose of this study is to acquire some conditions that reveal existence and stability for solutions to a class of difference equations with non-integer orderμ∈(1,2].The required conditions are obtained by appl...The purpose of this study is to acquire some conditions that reveal existence and stability for solutions to a class of difference equations with non-integer orderμ∈(1,2].The required conditions are obtained by applying the technique of contraction principle for uniqueness and Schauder’s fixed point theorem for existence.Also,we establish some conditions under which the solution of the considered class of difference equations is generalized Ulam-Hyers-Rassias stable.Example for the illustration of results is given.展开更多
A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the c...A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples.展开更多
In this paper,we consider a Riesz space-fractional reaction-dispersion equation (RSFRDE).The RSFRDE is obtained from the classical reaction-dispersion equation by replacing the second-order space derivative with a Rie...In this paper,we consider a Riesz space-fractional reaction-dispersion equation (RSFRDE).The RSFRDE is obtained from the classical reaction-dispersion equation by replacing the second-order space derivative with a Riesz derivative of orderβ∈(1,2]. We propose an implicit finite difference approximation for RSFRDE.The stability and convergence of the finite difference approximations are analyzed.Numerical results are found in good agreement with the theoretical analysis.展开更多
In this paper, we study the boundary value problem for an impulsive fractional <i><span style="font-family:Verdana;"><i>q</i></span></i><span style="font-family:Ve...In this paper, we study the boundary value problem for an impulsive fractional <i><span style="font-family:Verdana;"><i>q</i></span></i><span style="font-family:Verdana;">-difference equation. Based on Banach’s contraction mapping principle, the existence and Hyers-Ulam stability of solutions for the equation which we considered are obtained. At last, an illustrative example is given for the main result.</span>展开更多
In this paper, we discussed the problem of nonlocal value for nonlinear fractional q-difference equation. The classical tools of fixed point theorems such as Krasnoselskii’s theorem and Banach’s contraction principl...In this paper, we discussed the problem of nonlocal value for nonlinear fractional q-difference equation. The classical tools of fixed point theorems such as Krasnoselskii’s theorem and Banach’s contraction principle are used. At the end of the manuscript, we have an example that illustrates the key findings.展开更多
In order to study discrete nonconservative system,Hamilton's principle within fractional difference operators of Riemann-Liouville type is given. Discrete Lagrange equations of the nonconservative system as well a...In order to study discrete nonconservative system,Hamilton's principle within fractional difference operators of Riemann-Liouville type is given. Discrete Lagrange equations of the nonconservative system as well as the nonconservative system with dynamic constraint are established within fractional difference operators of Riemann-Liouville type from the view of time scales. Firstly,time scale calculus and fractional calculus are reviewed.Secondly,with the help of the properties of time scale calculus,discrete Lagrange equation of the nonconservative system within fractional difference operators of Riemann-Liouville type is presented. Thirdly,using the Lagrange multipliers,discrete Lagrange equation of the nonconservative system with dynamic constraint is also established.Then two special cases are discussed. Finally,two examples are devoted to illustrate the results.展开更多
Fractional differential equations have recently been applied in various areas of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. ...Fractional differential equations have recently been applied in various areas of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. In this paper, an efficient numerical method for solving the fractional Advection-dispersion equation (ADE) is considered. The fractional derivative is described in the Caputo sense. The method is based on Chebyshev approximations. The properties of Chebyshev polynomials are used to reduce ADE to a system of ordinary differential equations, which are solved using the finite difference method (FDM). Moreover, the convergence analysis and an upper bound of the error for the derived formula are given. Numerical solutions of ADE are presented and the results are compared with the exact solution.展开更多
In this paper,we propose numerical methods for the Riesz space fractional advection-dispersion equations with delay(RFADED).We utilize the fractional backward differential formulas method of second order(FBDF2)and wei...In this paper,we propose numerical methods for the Riesz space fractional advection-dispersion equations with delay(RFADED).We utilize the fractional backward differential formulas method of second order(FBDF2)and weighted shifted Grünwald difference(WSGD)operators to approximate the Riesz fractional derivative and present the finite difference method for the RFADED.Firstly,the FBDF2 and the shifted Grünwald methods are introduced.Secondly,based on the FBDF2 method and the WSGD operators,the finite difference method is applied to the problem.We also show that our numerical schemes are conditionally stable and convergent with the accuracy of O(+h2)and O(2+h2)respectively.Thirdly we find the analytical solution for RFDED in terms Mittag-Leffler type functions.Finally,some numerical examples are given to show the efficacy of the numerical methods and the results are found to be in complete agreement with the analytical solution.展开更多
In this paper, an efficient numerical method is considered for solving the fractional wave equation (FWE). The fractional derivative is described in the Caputo sense. The method is based on Laguerre approximations. Th...In this paper, an efficient numerical method is considered for solving the fractional wave equation (FWE). The fractional derivative is described in the Caputo sense. The method is based on Laguerre approximations. The properties of Laguerre polynomials are utilized to reduce FWE to a system of ordinary differential equations, which is solved by the finite difference method. An approximate formula of the fractional derivative is given. Special attention is given to study the convergence analysis and estimate an error upper bound of the presented formula. Numerical solutions of FWE are given and the results are compared with the exact solution.展开更多
As is well known,the definitions of fractional sum and fractional difference of f(z)on non-uniform lattices x(z)=c1z^(2)+c2z+c3 or x(z)=c1q^(z)+c2q^(-z)+c3 are more difficult and complicated.In this article,for the fi...As is well known,the definitions of fractional sum and fractional difference of f(z)on non-uniform lattices x(z)=c1z^(2)+c2z+c3 or x(z)=c1q^(z)+c2q^(-z)+c3 are more difficult and complicated.In this article,for the first time we propose the definitions of the fractional sum and fractional difference on non-uniform lattices by two different ways.The analogue of Euler’s Beta formula,Cauchy’Beta formula on non-uniform lattices are established,and some fundamental theorems of fractional calculas,the solution of the generalized Abel equation on non-uniform lattices are obtained etc.展开更多
This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finit...This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finite difference formulation for discretizing the Caputo time-fractional derivatives and RECBS functions to interpolate the solution curve along the spatial grid.Stability analysis of the scheme is provided to ensure that the errors do not amplify during the execution of the numerical procedure.The derivation of uniform convergence has also been presented.Some computational experiments are executed to verify the theoretical considerations.Numerical results are compared with the existing schemes and it is concluded that the present scheme returns superior outcomes on the topic.展开更多
In this paper,a Riesz space fractional advection-dispersion equation with fractional Robin boundary condition is considered.By applying the fractional central di erence formula and the weighted and shifted Grunwald-L...In this paper,a Riesz space fractional advection-dispersion equation with fractional Robin boundary condition is considered.By applying the fractional central di erence formula and the weighted and shifted Grunwald-Letnikov formula,we derive a weighted implicit nite difference scheme with accuracy O(△t^2+h^2).The solvability,stability,and convergence of the proposed numerical scheme are proved.A numerical example is presented to confirm the accuracy and efficiency of the scheme.展开更多
By transforming the Caputo tempered fractional advection-diffusion equation into the Riemann–Liouville tempered fractional advection-diffusion equation,and then using the fractional-compact Grünwald–Letnikov te...By transforming the Caputo tempered fractional advection-diffusion equation into the Riemann–Liouville tempered fractional advection-diffusion equation,and then using the fractional-compact Grünwald–Letnikov tempered difference operator to approximate the Riemann–Liouville tempered fractional partial derivative,the fractional central difference operator to discritize the space Riesz fractional partial derivative,and the classical central difference formula to discretize the advection term,a numerical algorithm is constructed for solving the Caputo tempered fractional advection-diffusion equation.The stability and the convergence analysis of the numerical method are given.Numerical experiments show that the numerical method is effective.展开更多
Several researchers have dealt with the one-dimensional fractional heat conduction equation in the last decades,but as far as we know,no one has investigated such a problem from the perspective of developing suitable ...Several researchers have dealt with the one-dimensional fractional heat conduction equation in the last decades,but as far as we know,no one has investigated such a problem from the perspective of developing suitable fractional-order methods.This has actually motivated us to address this problem by the way of establishing a proper fractional approach that involves employing a combination of a novel fractional difference formula to approximate the Caputo differentiator of orderαcoupled with the modified three-point fractional formula to approximate the Caputo differentiator of order 2α,where 0<α≤1.As a result,the fractional heat conduction equation is then reexpressed numerically using the aforementioned formulas,and by dividing the considered mesh into multiple nodes,a system is generated and algebraically solved with the aid of MATLAB.This would allow us to obtain the desired approximate solution for the problem at hand.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11171193 and11371229)the Natural Science Foundation of Shandong Province(No.ZR2014AM033)the Science and Technology Development Project of Shandong Province(No.2012GGB01198)
文摘An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for two special cases, i.e., a continued seep- age flow with a monotone percolation coefficient and a seepage flow with the fractional Neumann boundary condition. The accuracy and efficiency of the method are checked with two numerical examples.
基金Supported by the Discipline Construction and Teaching Research Fund of LUTcte(20140089)
文摘Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.
文摘In this paper, we investigate the existence of positive solutions for a class of nonlinear q-fractional boundary value problem. By using some fixed point theorems on cone, some existence results of positive solutions are obtained.
文摘In this paper, we approximate the solution to time-fractional telegraph equation by two kinds of difference methods: the Grünwald formula and Caputo fractional difference.
文摘Let,. We study the existence and multiple positive solutions of n-th nonlinear discrete fractional boundary value problem of the form By using a fixed-point theorem on cone, the parameter intervals of problem is established.
基金Project supported by the National Natural Science Foundation of China(Grant No.11471262)Henan University of Technology High-level Talents Fund,China(Grant No.2018BS039)
文摘The fractional Feynman-Kac equations describe the distributions of functionals of non-Brownian motion, or anomalous diffusion, including two types called the forward and backward fractional Feynman-Kac equations, where the nonlocal time-space coupled fractional substantial derivative is involved. This paper focuses on the more widely used backward version. Based on the newly proposed approximation operators for fractional substantial derivative, we establish compact finite difference schemes for the backward fractional Feynman-Kac equation. The proposed difference schemes have the q-th(q = 1, 2, 3, 4) order accuracy in temporal direction and fourth order accuracy in spatial direction, respectively. The numerical stability and convergence in the maximum norm are proved for the first order time discretization scheme by the discrete energy method, where an inner product in complex space is introduced. Finally, extensive numerical experiments are carried out to verify the availability and superiority of the algorithms. Also, simulations of the backward fractional Feynman-Kac equation with Dirac delta function as the initial condition are performed to further confirm the effectiveness of the proposed methods.
文摘The purpose of this study is to acquire some conditions that reveal existence and stability for solutions to a class of difference equations with non-integer orderμ∈(1,2].The required conditions are obtained by applying the technique of contraction principle for uniqueness and Schauder’s fixed point theorem for existence.Also,we establish some conditions under which the solution of the considered class of difference equations is generalized Ulam-Hyers-Rassias stable.Example for the illustration of results is given.
基金the National Natural Science Foundation of China(No.11701103)the Young Top-notch Talent Program of Guangdong Province of China(No.2017GC010379)+4 种基金the Natural Science Foundation of Guangdong Province of China(No.2022A1515012147)the Project of Science and Technology of Guangzhou of China(No.202102020704)the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University of China(2021023)the Science and Technology Development Fund,Macao SAR(File No.0005/2019/A)the University of Macao of China(File Nos.MYRG2020-00035-FST,MYRG2018-00047-FST).
文摘A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China under Grant 10271098 the Australian Research Council grant LP0348653.
文摘In this paper,we consider a Riesz space-fractional reaction-dispersion equation (RSFRDE).The RSFRDE is obtained from the classical reaction-dispersion equation by replacing the second-order space derivative with a Riesz derivative of orderβ∈(1,2]. We propose an implicit finite difference approximation for RSFRDE.The stability and convergence of the finite difference approximations are analyzed.Numerical results are found in good agreement with the theoretical analysis.
文摘In this paper, we study the boundary value problem for an impulsive fractional <i><span style="font-family:Verdana;"><i>q</i></span></i><span style="font-family:Verdana;">-difference equation. Based on Banach’s contraction mapping principle, the existence and Hyers-Ulam stability of solutions for the equation which we considered are obtained. At last, an illustrative example is given for the main result.</span>
文摘In this paper, we discussed the problem of nonlocal value for nonlinear fractional q-difference equation. The classical tools of fixed point theorems such as Krasnoselskii’s theorem and Banach’s contraction principle are used. At the end of the manuscript, we have an example that illustrates the key findings.
基金supported by the National Natural Science Foundation of China(Nos.11802193, 11572212,11272227)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJB130005)+1 种基金the Science Research Foundation of Suzhou University of Science and Technology(331812137)Natural Science Foundation of Suzhou University of Science and Technology
文摘In order to study discrete nonconservative system,Hamilton's principle within fractional difference operators of Riemann-Liouville type is given. Discrete Lagrange equations of the nonconservative system as well as the nonconservative system with dynamic constraint are established within fractional difference operators of Riemann-Liouville type from the view of time scales. Firstly,time scale calculus and fractional calculus are reviewed.Secondly,with the help of the properties of time scale calculus,discrete Lagrange equation of the nonconservative system within fractional difference operators of Riemann-Liouville type is presented. Thirdly,using the Lagrange multipliers,discrete Lagrange equation of the nonconservative system with dynamic constraint is also established.Then two special cases are discussed. Finally,two examples are devoted to illustrate the results.
文摘Fractional differential equations have recently been applied in various areas of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. In this paper, an efficient numerical method for solving the fractional Advection-dispersion equation (ADE) is considered. The fractional derivative is described in the Caputo sense. The method is based on Chebyshev approximations. The properties of Chebyshev polynomials are used to reduce ADE to a system of ordinary differential equations, which are solved using the finite difference method (FDM). Moreover, the convergence analysis and an upper bound of the error for the derived formula are given. Numerical solutions of ADE are presented and the results are compared with the exact solution.
文摘In this paper,we propose numerical methods for the Riesz space fractional advection-dispersion equations with delay(RFADED).We utilize the fractional backward differential formulas method of second order(FBDF2)and weighted shifted Grünwald difference(WSGD)operators to approximate the Riesz fractional derivative and present the finite difference method for the RFADED.Firstly,the FBDF2 and the shifted Grünwald methods are introduced.Secondly,based on the FBDF2 method and the WSGD operators,the finite difference method is applied to the problem.We also show that our numerical schemes are conditionally stable and convergent with the accuracy of O(+h2)and O(2+h2)respectively.Thirdly we find the analytical solution for RFDED in terms Mittag-Leffler type functions.Finally,some numerical examples are given to show the efficacy of the numerical methods and the results are found to be in complete agreement with the analytical solution.
文摘In this paper, an efficient numerical method is considered for solving the fractional wave equation (FWE). The fractional derivative is described in the Caputo sense. The method is based on Laguerre approximations. The properties of Laguerre polynomials are utilized to reduce FWE to a system of ordinary differential equations, which is solved by the finite difference method. An approximate formula of the fractional derivative is given. Special attention is given to study the convergence analysis and estimate an error upper bound of the presented formula. Numerical solutions of FWE are given and the results are compared with the exact solution.
基金Supported by the National Natural Science Foundation Fujian province of China(2016J01032).
文摘As is well known,the definitions of fractional sum and fractional difference of f(z)on non-uniform lattices x(z)=c1z^(2)+c2z+c3 or x(z)=c1q^(z)+c2q^(-z)+c3 are more difficult and complicated.In this article,for the first time we propose the definitions of the fractional sum and fractional difference on non-uniform lattices by two different ways.The analogue of Euler’s Beta formula,Cauchy’Beta formula on non-uniform lattices are established,and some fundamental theorems of fractional calculas,the solution of the generalized Abel equation on non-uniform lattices are obtained etc.
文摘This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finite difference formulation for discretizing the Caputo time-fractional derivatives and RECBS functions to interpolate the solution curve along the spatial grid.Stability analysis of the scheme is provided to ensure that the errors do not amplify during the execution of the numerical procedure.The derivation of uniform convergence has also been presented.Some computational experiments are executed to verify the theoretical considerations.Numerical results are compared with the existing schemes and it is concluded that the present scheme returns superior outcomes on the topic.
基金Supported by the Nation Natural Science Foundation of China(No.11271141)the Chongqing Science and Technology Commission(cstc2018jcyjAX0787)。
文摘In this paper,a Riesz space fractional advection-dispersion equation with fractional Robin boundary condition is considered.By applying the fractional central di erence formula and the weighted and shifted Grunwald-Letnikov formula,we derive a weighted implicit nite difference scheme with accuracy O(△t^2+h^2).The solvability,stability,and convergence of the proposed numerical scheme are proved.A numerical example is presented to confirm the accuracy and efficiency of the scheme.
文摘By transforming the Caputo tempered fractional advection-diffusion equation into the Riemann–Liouville tempered fractional advection-diffusion equation,and then using the fractional-compact Grünwald–Letnikov tempered difference operator to approximate the Riemann–Liouville tempered fractional partial derivative,the fractional central difference operator to discritize the space Riesz fractional partial derivative,and the classical central difference formula to discretize the advection term,a numerical algorithm is constructed for solving the Caputo tempered fractional advection-diffusion equation.The stability and the convergence analysis of the numerical method are given.Numerical experiments show that the numerical method is effective.
文摘Several researchers have dealt with the one-dimensional fractional heat conduction equation in the last decades,but as far as we know,no one has investigated such a problem from the perspective of developing suitable fractional-order methods.This has actually motivated us to address this problem by the way of establishing a proper fractional approach that involves employing a combination of a novel fractional difference formula to approximate the Caputo differentiator of orderαcoupled with the modified three-point fractional formula to approximate the Caputo differentiator of order 2α,where 0<α≤1.As a result,the fractional heat conduction equation is then reexpressed numerically using the aforementioned formulas,and by dividing the considered mesh into multiple nodes,a system is generated and algebraically solved with the aid of MATLAB.This would allow us to obtain the desired approximate solution for the problem at hand.