In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit n...In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit numerical method is employed to solve the direct problem.For the inverse problem,we first obtain the fractional sensitivity equation by means of the digamma function,and then we propose an efficient numerical method,that is,the Levenberg-Marquardt algorithm based on a fractional derivative,to estimate the unknown order of a Riemann-Liouville fractional derivative.In order to demonstrate the effectiveness of the proposed numerical method,two cases in which the measurement values contain random measurement error or not are considered.The computational results demonstrate that the proposed numerical method could efficiently obtain the optimal estimation of the unknown order of a RiemannLiouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.展开更多
In this work, we study existence theorem of the initial value problem for the system of fractional differential equations where Dα denotes standard Riemann-Liouville fractional derivative, 0 and A ?is a square matrix...In this work, we study existence theorem of the initial value problem for the system of fractional differential equations where Dα denotes standard Riemann-Liouville fractional derivative, 0 and A ?is a square matrix. At the same time, power-type estimate for them has been given.展开更多
By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the res...By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the results to the research concerning the boundness, uniqueness and continuous dependence on the initial for solutions to certain fractional differential equations.展开更多
In this paper, we focus on studying the fractional variational principle and the differential equations of motion for a fractional mechanical system. A combined Riemann-Liouville fractional derivative operator is defi...In this paper, we focus on studying the fractional variational principle and the differential equations of motion for a fractional mechanical system. A combined Riemann-Liouville fractional derivative operator is defined, and a fractional Hamilton principle under this definition is established. The fractional Lagrange equations and the fractional Hamilton canonical equations are derived from the fractional Hamilton principle. A number of special cases are given, showing the universality of our conclusions. At the end of the paper, an example is given to illustrate the application of the results.展开更多
The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding ...The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding transversality conditions are given. Secondly, from special to general forms, Noether's theorems of a standard Birhoffian system are given, which provide an approach and theoretical basis for the further research on the Noether symmetry of the fractional Birkhoffian system. Thirdly, the invariances of the fractional Pfaffian action under a special one-parameter group of infinitesimal transformations without transforming the time and a general one-parameter group of infinitesimal transformations with transforming the time are studied, respectively, and the corresponding Noether's theorems are established. Finally, an example is given to illustrate the application of the results.展开更多
The fractional Pfaffian variational problem and Noether’s theorems were investigated in terms of Riemann-Liouville derivatives on the basis of El-Nabulsi fractional model.The problem of the calculus of variations wit...The fractional Pfaffian variational problem and Noether’s theorems were investigated in terms of Riemann-Liouville derivatives on the basis of El-Nabulsi fractional model.The problem of the calculus of variations with fractional derivatives is a hot topic recently.Firstly,within Riemann-Liouville derivatives,the ElNabulsi Pfaffian variational problem was presented,the fractional Pfaff-Birkhoff-d’Alembert principle was established,and the fractional Birkhoff equations and the corresponding transversality conditions were obtained.Then,the Noether’s theorems in terms of Riemann-Liouville derivatives for the Birkhoffian system on the basis of El-Nabulsi fractional model are investigated under the special and the general transformations respectively.Finally,an example is given to illustrate the methods and results appeared in this paper.展开更多
In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators...In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators.The existence,uniqueness,and stability of the proposed model are discussed.Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models.Comparative studies with generalized fifth-order Runge-Kutta method are given.Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented.We have showcased the efficiency of the proposed method and garnered robust empirical support for our theoretical findings.展开更多
By applying the standard fixed point theorems,we prove the existence and uniqueness results for a system of coupled differential equations involving both left Caputo and right Riemann-Liouville fractional derivatives ...By applying the standard fixed point theorems,we prove the existence and uniqueness results for a system of coupled differential equations involving both left Caputo and right Riemann-Liouville fractional derivatives and mixed fractional integrals,supplemented with nonlocal coupled fractional integral boundary conditions.An example is also constructed for the illustration of the obtained results.展开更多
The fractional calculus approach in the constitutive relationship model of a generalized second grade fluid is introduced.Exact analytical solutions are obtained for a class of unsteady flows for the generalized secon...The fractional calculus approach in the constitutive relationship model of a generalized second grade fluid is introduced.Exact analytical solutions are obtained for a class of unsteady flows for the generalized second grade fluid with the fractional derivative model between two parallel plates by using the Laplace transform and Fourier transform for fractional calculus.The unsteady flows are generated by the impulsive motion or periodic oscillation of one of the plates.In addition,the solutions of the shear stresses at the plates are also determined.展开更多
In this paper, we discuss the existence, uniqueness and stability of boundary value problem for differential equation with Hilfer-Katugampola fractional derivative. The arguments are based upon Schaefer's fixed po...In this paper, we discuss the existence, uniqueness and stability of boundary value problem for differential equation with Hilfer-Katugampola fractional derivative. The arguments are based upon Schaefer's fixed point theorem, Banach contraction principle and Ulam type stability.展开更多
This paper presents extensions to the traditional calculus of variations for mechanico-electrical systems containing fractional derivatives. The Euler Lagrange equations and the Hamilton formalism of the mechanico-ele...This paper presents extensions to the traditional calculus of variations for mechanico-electrical systems containing fractional derivatives. The Euler Lagrange equations and the Hamilton formalism of the mechanico-electrical systems with fractional derivatives are established. The definition and the criteria for the fractional generalized Noether quasi- symmetry are presented. Furthermore, the fractional Noether theorem and conseved quantities of the systems are obtained by virtue of the invariance of the Hamiltonian action under the infinitesimal transformations. An example is presented to illustrate the application of the results.展开更多
This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, ba...This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, based on these exchanging relationships, the Hamilton's principle is presented for non-conservative systems with fractional derivatives. Thirdly, Lagrange equations of the systems are obtained. Furthermore, the d'Alembert-Lagrange principle with fractional derivatives is presented, and the Lagrange equations of nonholonomic systems with fractional derivatives are studied. An example is designed to illustrate these results.展开更多
Invariant conditions for conformable fractional problems of the calculus of variations under the presence of external forces in the dynamics are studied. Depending on the type of transformations considered, different ...Invariant conditions for conformable fractional problems of the calculus of variations under the presence of external forces in the dynamics are studied. Depending on the type of transformations considered, different necessary conditions of invariance are obtained. As particular cases, we prove fractional versions of Noether's symmetry theorem. Invariant conditions for fractional optimal control problems, using the Hamiltonian formalism, are also investigated. As an example of potential application in Physics, we show that with conformable derivatives it is possible to formulate an Action Principle for particles under frictional forces that is far simpler than the one obtained with classical fractional derivatives.展开更多
Viscoelastic dampers,as spplementary energy dissipation devices,have been used in building structures un- der seismic excitation or wind loads.Different analytical models have been proposed to describe their dynamic f...Viscoelastic dampers,as spplementary energy dissipation devices,have been used in building structures un- der seismic excitation or wind loads.Different analytical models have been proposed to describe their dynamic force deform- ation characteristics.Among these analytieal models,the fractional derivative models have attracted more attention as they can capture the frequency dependence of the material stiffness and damping properties observed from tests very well.In this paper,a Fourier-transform-based technique is presented to obtain the fractional unit impulse function and the response of structures with added viscoelastic dampers whose foree-detormation relationship is described by a fractional derivative mod- el.Then,a Duhamel integral-type expression is suggested for the response analysis of a fractional damped dynamie system subjected to deterministic or random excitation.Through numerical verification,it is shown that viscoelastic dampers are ef- fective in reducing structural responses over a wide frequency range,and the proposed schmnes can be used to accurately predict the stochastic seismic response of structures with added viscoelastic dampers described by a Kelvin model wills frac- tional derivative.展开更多
The dynamical and physical behavior of a complex system can be more accurately described by using the fractional model.With the successful use of fractional calculus in many areas of science and engineering,it is nece...The dynamical and physical behavior of a complex system can be more accurately described by using the fractional model.With the successful use of fractional calculus in many areas of science and engineering,it is necessary to extend the classical theories and methods of analytical mechanics to the fractional dynamic system.Birkhoffian mechanics is a natural generalization of Hamiltonian mechanics,and its core is the Pfaff-Birkhoff principle and Birkhoff′s equations.The study on the Birkhoffian mechanics is an important developmental direction of modern analytical mechanics.Here,the fractional Pfaff-Birkhoff variational problem is presented and studied.The definitions of fractional derivatives,the formulae for integration by parts and some other preliminaries are firstly given.Secondly,the fractional Pfaff-Birkhoff principle and the fractional Birkhoff′s equations in terms of RieszRiemann-Liouville fractional derivatives and Riesz-Caputo fractional derivatives are presented respectively.Finally,an example is given to illustrate the application of the results.展开更多
In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagran...In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagrange equations of the system are obtained under a combined Caputo derivative. Furthermore, the fractional cyclic integrals based on the Lagrange equations are studied and the associated Routh equations of the system are presented. Finally, two examples are given to show the applications of the results.展开更多
In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship betwe...In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton's canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results.展开更多
This paper aims to investigate the stochastic response of the van der Pol (VDP) oscillator with two kinds of fractional derivatives under Gaussian white noise excitation. First, the fractional VDP oscillator is repl...This paper aims to investigate the stochastic response of the van der Pol (VDP) oscillator with two kinds of fractional derivatives under Gaussian white noise excitation. First, the fractional VDP oscillator is replaced by an equivalent VDP oscillator without fractional derivative terms by using the generalized harmonic balance technique. Then, the stochastic averaging method is applied to the equivalent VDP oscillator to obtain the analytical solution. Finally, the analytical solutions are validated by numerical results from the Monte Carlo simulation of the original fractional VDP oscillator. The numerical results not only demonstrate the accuracy of the proposed approach but also show that the fractional order, the fractional coefficient and the intensity of Gaussian white noise play important roles in the responses of the fractional VDP oscillator. An interesting phenomenon we found is that the effects of the fractional order of two kinds of fractional derivative items on the fractional stochastic systems are totally contrary.展开更多
Advances in material science and mathematics in conjunction with tech- nological needs have triggered the use of material and electric components with fractional order physical properties. This paper considers the mat...Advances in material science and mathematics in conjunction with tech- nological needs have triggered the use of material and electric components with fractional order physical properties. This paper considers the mathematical model of a piezoelectric wind flow energy harvester system for which the capacitance of the piezoelectric material has fractional order current-voltage characteristics. Additionally the mechanical element is assumed to have fractional order damping. The analysis is focused on the effects of order of derivatives on the appearance and characteristics of limit circle oscillations (LCO). It is obtained that, the order of derivatives to enhance the amplitude of LCO and lower the threshold condition leading to LCO. The domains of efficiency of the system are illustrated in various parameters spaces.展开更多
It is known that there exist obivious differences between the two most commonly used definitions of fractional derivatives-Riemann-Liouville (R-L) definition and Caputo definition. The multiple definitions of fracti...It is known that there exist obivious differences between the two most commonly used definitions of fractional derivatives-Riemann-Liouville (R-L) definition and Caputo definition. The multiple definitions of fractional derivatives in fractional calculus have hindered the application of fractional calculus in rheology. In this paper, we clarify that the R-L definition and Caputo definition are both rheologically imperfect with the help of mechanical analogues of the fractional element model (Scott-Blair model). We also clarify that to make them perfect rheologically, the lower terminals of both definitions should be put to ∞. We further prove that the R-L definition with lower terminal a →∞ and the Caputo definition with lower terminal a →∞ are equivalent in the differentiation of functions that are smooth enough and functions that have finite number of singular points. Thus we can define the fractional derivatives in rheology as the R-L derivatives with lower terminal a →∞ (or, equivalently, the Caputo derivatives with lower terminal a →∞) not only for steady-state processes, but also for transient processes. Based on the above definition, the problems of composition rules of fractional operators and the initial conditions for fractional differential equations are discussed, respectively. As an example we study a fractional oscillator with Scott-Blair model and give an exact solution of this equation under given initial conditions.展开更多
基金supported by the National Natural Science Foundation of China(Grants 11472161,11102102,and 91130017)the Independent Innovation Foundation of Shandong University(Grant 2013ZRYQ002)the Natural Science Foundation of Shandong Province(Grant ZR2014AQ015)
文摘In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit numerical method is employed to solve the direct problem.For the inverse problem,we first obtain the fractional sensitivity equation by means of the digamma function,and then we propose an efficient numerical method,that is,the Levenberg-Marquardt algorithm based on a fractional derivative,to estimate the unknown order of a Riemann-Liouville fractional derivative.In order to demonstrate the effectiveness of the proposed numerical method,two cases in which the measurement values contain random measurement error or not are considered.The computational results demonstrate that the proposed numerical method could efficiently obtain the optimal estimation of the unknown order of a RiemannLiouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.
文摘In this work, we study existence theorem of the initial value problem for the system of fractional differential equations where Dα denotes standard Riemann-Liouville fractional derivative, 0 and A ?is a square matrix. At the same time, power-type estimate for them has been given.
文摘By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the results to the research concerning the boundness, uniqueness and continuous dependence on the initial for solutions to certain fractional differential equations.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10972151)
文摘In this paper, we focus on studying the fractional variational principle and the differential equations of motion for a fractional mechanical system. A combined Riemann-Liouville fractional derivative operator is defined, and a fractional Hamilton principle under this definition is established. The fractional Lagrange equations and the fractional Hamilton canonical equations are derived from the fractional Hamilton principle. A number of special cases are given, showing the universality of our conclusions. At the end of the paper, an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10972151 and 11272227the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(Grant No.CXZZ11 0949)
文摘The Noether symmetry and the conserved quantity of a fractional Birkhoffian system are studied within the Riemann–Liouville fractional derivatives. Firstly, the fractional Birkhoff's equations and the corresponding transversality conditions are given. Secondly, from special to general forms, Noether's theorems of a standard Birhoffian system are given, which provide an approach and theoretical basis for the further research on the Noether symmetry of the fractional Birkhoffian system. Thirdly, the invariances of the fractional Pfaffian action under a special one-parameter group of infinitesimal transformations without transforming the time and a general one-parameter group of infinitesimal transformations with transforming the time are studied, respectively, and the corresponding Noether's theorems are established. Finally, an example is given to illustrate the application of the results.
基金National Natural Science Foundations of China(Nos.11572212,11272227,10972151)the Innovation Program for Scientific Research of Nanjing University of Science and Technology,Chinathe Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(No.KYLX15_0405)
文摘The fractional Pfaffian variational problem and Noether’s theorems were investigated in terms of Riemann-Liouville derivatives on the basis of El-Nabulsi fractional model.The problem of the calculus of variations with fractional derivatives is a hot topic recently.Firstly,within Riemann-Liouville derivatives,the ElNabulsi Pfaffian variational problem was presented,the fractional Pfaff-Birkhoff-d’Alembert principle was established,and the fractional Birkhoff equations and the corresponding transversality conditions were obtained.Then,the Noether’s theorems in terms of Riemann-Liouville derivatives for the Birkhoffian system on the basis of El-Nabulsi fractional model are investigated under the special and the general transformations respectively.Finally,an example is given to illustrate the methods and results appeared in this paper.
文摘In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators.The existence,uniqueness,and stability of the proposed model are discussed.Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models.Comparative studies with generalized fifth-order Runge-Kutta method are given.Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented.We have showcased the efficiency of the proposed method and garnered robust empirical support for our theoretical findings.
基金This project was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia(KEP-MSc-63-130-42).
文摘By applying the standard fixed point theorems,we prove the existence and uniqueness results for a system of coupled differential equations involving both left Caputo and right Riemann-Liouville fractional derivatives and mixed fractional integrals,supplemented with nonlocal coupled fractional integral boundary conditions.An example is also constructed for the illustration of the obtained results.
基金The project supported by the National Natural Science Foundation of China (10372007,10002003) and CNPC Innovation Fund
文摘The fractional calculus approach in the constitutive relationship model of a generalized second grade fluid is introduced.Exact analytical solutions are obtained for a class of unsteady flows for the generalized second grade fluid with the fractional derivative model between two parallel plates by using the Laplace transform and Fourier transform for fractional calculus.The unsteady flows are generated by the impulsive motion or periodic oscillation of one of the plates.In addition,the solutions of the shear stresses at the plates are also determined.
基金funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia under grant no.KEP-Msc-9-130-39
文摘In this paper, we discuss the existence, uniqueness and stability of boundary value problem for differential equation with Hilfer-Katugampola fractional derivative. The arguments are based upon Schaefer's fixed point theorem, Banach contraction principle and Ulam type stability.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11072218 and 60575055)
文摘This paper presents extensions to the traditional calculus of variations for mechanico-electrical systems containing fractional derivatives. The Euler Lagrange equations and the Hamilton formalism of the mechanico-electrical systems with fractional derivatives are established. The definition and the criteria for the fractional generalized Noether quasi- symmetry are presented. Furthermore, the fractional Noether theorem and conseved quantities of the systems are obtained by virtue of the invariance of the Hamiltonian action under the infinitesimal transformations. An example is presented to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11072218 and 10672143)
文摘This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, based on these exchanging relationships, the Hamilton's principle is presented for non-conservative systems with fractional derivatives. Thirdly, Lagrange equations of the systems are obtained. Furthermore, the d'Alembert-Lagrange principle with fractional derivatives is presented, and the Lagrange equations of nonholonomic systems with fractional derivatives are studied. An example is designed to illustrate these results.
基金supported by CNPq and CAPES(Brazilian research funding agencies)Portuguese funds through the Center for Research and Development in Mathematics and Applications(CIDMA)the Portuguese Foundation for Science and Technology(FCT),within project UID/MAT/04106/2013
文摘Invariant conditions for conformable fractional problems of the calculus of variations under the presence of external forces in the dynamics are studied. Depending on the type of transformations considered, different necessary conditions of invariance are obtained. As particular cases, we prove fractional versions of Noether's symmetry theorem. Invariant conditions for fractional optimal control problems, using the Hamiltonian formalism, are also investigated. As an example of potential application in Physics, we show that with conformable derivatives it is possible to formulate an Action Principle for particles under frictional forces that is far simpler than the one obtained with classical fractional derivatives.
文摘Viscoelastic dampers,as spplementary energy dissipation devices,have been used in building structures un- der seismic excitation or wind loads.Different analytical models have been proposed to describe their dynamic force deform- ation characteristics.Among these analytieal models,the fractional derivative models have attracted more attention as they can capture the frequency dependence of the material stiffness and damping properties observed from tests very well.In this paper,a Fourier-transform-based technique is presented to obtain the fractional unit impulse function and the response of structures with added viscoelastic dampers whose foree-detormation relationship is described by a fractional derivative mod- el.Then,a Duhamel integral-type expression is suggested for the response analysis of a fractional damped dynamie system subjected to deterministic or random excitation.Through numerical verification,it is shown that viscoelastic dampers are ef- fective in reducing structural responses over a wide frequency range,and the proposed schmnes can be used to accurately predict the stochastic seismic response of structures with added viscoelastic dampers described by a Kelvin model wills frac- tional derivative.
基金Supported by the National Natural Science Foundation of China(10972151,11272227)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province(CXZZ11_0949)the Innovation Program for Postgraduate of Suzhou University of Science and Technology(SKCX11S_050)
文摘The dynamical and physical behavior of a complex system can be more accurately described by using the fractional model.With the successful use of fractional calculus in many areas of science and engineering,it is necessary to extend the classical theories and methods of analytical mechanics to the fractional dynamic system.Birkhoffian mechanics is a natural generalization of Hamiltonian mechanics,and its core is the Pfaff-Birkhoff principle and Birkhoff′s equations.The study on the Birkhoffian mechanics is an important developmental direction of modern analytical mechanics.Here,the fractional Pfaff-Birkhoff variational problem is presented and studied.The definitions of fractional derivatives,the formulae for integration by parts and some other preliminaries are firstly given.Secondly,the fractional Pfaff-Birkhoff principle and the fractional Birkhoff′s equations in terms of RieszRiemann-Liouville fractional derivatives and Riesz-Caputo fractional derivatives are presented respectively.Finally,an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.11272287 and 11472247)the Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(Grant No.IRT13097)
文摘In this paper, we develop a fractional cyclic integral and a Routh equation for fractional Lagrange system defined in terms of fractional Caputo derivatives. The fractional Hamilton principle and the fractional Lagrange equations of the system are obtained under a combined Caputo derivative. Furthermore, the fractional cyclic integrals based on the Lagrange equations are studied and the associated Routh equations of the system are presented. Finally, two examples are given to show the applications of the results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272287 and 11472247)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT13097)the Key Science and Technology Innovation Team Project of Zhejiang Province,China(Grant No.2013TD18)
文摘In this paper, we present the fractional Hamilton's canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. First/y, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton's canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11472212,11532011,and 11502201)
文摘This paper aims to investigate the stochastic response of the van der Pol (VDP) oscillator with two kinds of fractional derivatives under Gaussian white noise excitation. First, the fractional VDP oscillator is replaced by an equivalent VDP oscillator without fractional derivative terms by using the generalized harmonic balance technique. Then, the stochastic averaging method is applied to the equivalent VDP oscillator to obtain the analytical solution. Finally, the analytical solutions are validated by numerical results from the Monte Carlo simulation of the original fractional VDP oscillator. The numerical results not only demonstrate the accuracy of the proposed approach but also show that the fractional order, the fractional coefficient and the intensity of Gaussian white noise play important roles in the responses of the fractional VDP oscillator. An interesting phenomenon we found is that the effects of the fractional order of two kinds of fractional derivative items on the fractional stochastic systems are totally contrary.
基金supported by the Polish National Science Center(G.L.)(2012/05/B/ST8/00080)
文摘Advances in material science and mathematics in conjunction with tech- nological needs have triggered the use of material and electric components with fractional order physical properties. This paper considers the mathematical model of a piezoelectric wind flow energy harvester system for which the capacitance of the piezoelectric material has fractional order current-voltage characteristics. Additionally the mechanical element is assumed to have fractional order damping. The analysis is focused on the effects of order of derivatives on the appearance and characteristics of limit circle oscillations (LCO). It is obtained that, the order of derivatives to enhance the amplitude of LCO and lower the threshold condition leading to LCO. The domains of efficiency of the system are illustrated in various parameters spaces.
基金supported by the National Natural Science Foundation of China (10972117)
文摘It is known that there exist obivious differences between the two most commonly used definitions of fractional derivatives-Riemann-Liouville (R-L) definition and Caputo definition. The multiple definitions of fractional derivatives in fractional calculus have hindered the application of fractional calculus in rheology. In this paper, we clarify that the R-L definition and Caputo definition are both rheologically imperfect with the help of mechanical analogues of the fractional element model (Scott-Blair model). We also clarify that to make them perfect rheologically, the lower terminals of both definitions should be put to ∞. We further prove that the R-L definition with lower terminal a →∞ and the Caputo definition with lower terminal a →∞ are equivalent in the differentiation of functions that are smooth enough and functions that have finite number of singular points. Thus we can define the fractional derivatives in rheology as the R-L derivatives with lower terminal a →∞ (or, equivalently, the Caputo derivatives with lower terminal a →∞) not only for steady-state processes, but also for transient processes. Based on the above definition, the problems of composition rules of fractional operators and the initial conditions for fractional differential equations are discussed, respectively. As an example we study a fractional oscillator with Scott-Blair model and give an exact solution of this equation under given initial conditions.