In this paper, we study complete open manifolds with nonnegative Ricci curvature and injectivity radius bounded from below. We find that this kind of manifolds are diffeomorphic to a Euclidean space when certain dista...In this paper, we study complete open manifolds with nonnegative Ricci curvature and injectivity radius bounded from below. We find that this kind of manifolds are diffeomorphic to a Euclidean space when certain distance functions satisfy a reasonable condition.展开更多
In this paper, we study the relation between the excess of open manifolds and their topology by using the methods of comparison geometry. We prove that a complete open Riemmannian manifold with Ricci curvature negativ...In this paper, we study the relation between the excess of open manifolds and their topology by using the methods of comparison geometry. We prove that a complete open Riemmannian manifold with Ricci curvature negatively lower bounded is of finite topological type provided that the conjugate radius is bounded from below by a positive constant and its Excess is bounded by some function of its conjugate radius, which improves some results in [4].展开更多
The paper quotes the concept of Ricci curvature decay to zero. Base on this new concept, by modifying the proof of the canonical Cheeger-Gromoll Splitting Theorem, the paper proves that for a complete non-compact Riem...The paper quotes the concept of Ricci curvature decay to zero. Base on this new concept, by modifying the proof of the canonical Cheeger-Gromoll Splitting Theorem, the paper proves that for a complete non-compact Riemannian manifold M with Ricci curvature decay to zero, if there is a line in M, then the isometrically splitting M = R × N is true.展开更多
Let be a simply connected complete Riemannian manifold with dimension n≥3 . Suppose that the sectional curvature satisfies , where p is distance function from a base point of M, a, b are constants and . Then there ex...Let be a simply connected complete Riemannian manifold with dimension n≥3 . Suppose that the sectional curvature satisfies , where p is distance function from a base point of M, a, b are constants and . Then there exist harmonic functions on M .展开更多
In this paper, we obtain an estimate for the lower bound for the dimensions of harmonic functions with polynomial growth and a Liouville type theorem on manifolds with nonnegative Ricci curvature whose tangent cone at...In this paper, we obtain an estimate for the lower bound for the dimensions of harmonic functions with polynomial growth and a Liouville type theorem on manifolds with nonnegative Ricci curvature whose tangent cone at infinity is a unique metric cone with a conic measure.展开更多
In a previous paper(Jiang and Yang(2021)),we constructed complete manifolds of positive Ricci curvature with quadratically asymptotically nonnegative curvature and infinite topological type but dimensions greater than...In a previous paper(Jiang and Yang(2021)),we constructed complete manifolds of positive Ricci curvature with quadratically asymptotically nonnegative curvature and infinite topological type but dimensions greater than or equal to 6.The purpose of the present paper is to use a different technique to exhibit a family of complete I-dimensional(I≥5)Riemannian manifolds of positive Ricci curvature,quadratically asymptotically nonnegative sectional curvature,and certain infinite Betti numbers bj(2≤j≤I-2).展开更多
Let N_v^n be an n-dimensional pseudo-Riemannian manifold with index v, M_μ~m an m(【n)-dimensional pseudo-Riemannian submanifold with index μ (≤v) isometrically immersed into N_v^n. If the mean curvature of M_μ~m ...Let N_v^n be an n-dimensional pseudo-Riemannian manifold with index v, M_μ~m an m(【n)-dimensional pseudo-Riemannian submanifold with index μ (≤v) isometrically immersed into N_v^n. If the mean curvature of M_μ~m in N_v^n vanishes identically, then M_μ~m is called an extremal submanifold. Particularly, an extremal submanifold in N with μ=0 and m=n-v is called a maximal spacelike submanifold.展开更多
In this paper,a basic estimate for the conditional Riemannian Brownian motion on a complete manifold with non-negative Ricci curvature is established.Applying it to the heat kernel estimate of the operator 1/2△+b,we ...In this paper,a basic estimate for the conditional Riemannian Brownian motion on a complete manifold with non-negative Ricci curvature is established.Applying it to the heat kernel estimate of the operator 1/2△+b,we obtain the Aronson′s estimate for the operator 1/2△+b,which can be regarded as an extension of Peter Li and S.T.Yau's heat kernel estimate for the Laplace-Beltrami operator.展开更多
In this paper, we study the infinity behavior of the bounded subharmonic functions on a Ricci non-negative Riemannian manifold M. We first show that if h is a bounded subharmonic function. If we further assume that t...In this paper, we study the infinity behavior of the bounded subharmonic functions on a Ricci non-negative Riemannian manifold M. We first show that if h is a bounded subharmonic function. If we further assume that the Laplacian decays pointwisely faster than quadratically we show that h approaches its supremun pointwisely at infinity, under certain auxiliary conditions on the volume growth of M. In particular, our result applies to the case when the Riemannian manifold has maximum volume growth. We also derive a representation formula in our paper, from which one can easily derive Yau’s Liouville theorem on bounded harmonic functions.展开更多
文摘In this paper, we study complete open manifolds with nonnegative Ricci curvature and injectivity radius bounded from below. We find that this kind of manifolds are diffeomorphic to a Euclidean space when certain distance functions satisfy a reasonable condition.
基金Supported by the National Natural Science Foundation of China(10371047)
文摘In this paper, we study the relation between the excess of open manifolds and their topology by using the methods of comparison geometry. We prove that a complete open Riemmannian manifold with Ricci curvature negatively lower bounded is of finite topological type provided that the conjugate radius is bounded from below by a positive constant and its Excess is bounded by some function of its conjugate radius, which improves some results in [4].
文摘The paper quotes the concept of Ricci curvature decay to zero. Base on this new concept, by modifying the proof of the canonical Cheeger-Gromoll Splitting Theorem, the paper proves that for a complete non-compact Riemannian manifold M with Ricci curvature decay to zero, if there is a line in M, then the isometrically splitting M = R × N is true.
文摘Let be a simply connected complete Riemannian manifold with dimension n≥3 . Suppose that the sectional curvature satisfies , where p is distance function from a base point of M, a, b are constants and . Then there exist harmonic functions on M .
基金partially supported by NSFC(11701580and 11521101)the Fundamental Research Funds for the Central Universities(17lgpy13)
文摘In this paper, we obtain an estimate for the lower bound for the dimensions of harmonic functions with polynomial growth and a Liouville type theorem on manifolds with nonnegative Ricci curvature whose tangent cone at infinity is a unique metric cone with a conic measure.
基金supported by National Natural Science Foundation of China(Grant Nos.11571228 and 12071283)fund of Shanghai Normal University(Grant No.SK202002)。
文摘In a previous paper(Jiang and Yang(2021)),we constructed complete manifolds of positive Ricci curvature with quadratically asymptotically nonnegative curvature and infinite topological type but dimensions greater than or equal to 6.The purpose of the present paper is to use a different technique to exhibit a family of complete I-dimensional(I≥5)Riemannian manifolds of positive Ricci curvature,quadratically asymptotically nonnegative sectional curvature,and certain infinite Betti numbers bj(2≤j≤I-2).
基金Project supported by the National Natural Science Foundation of China.
文摘Let N_v^n be an n-dimensional pseudo-Riemannian manifold with index v, M_μ~m an m(【n)-dimensional pseudo-Riemannian submanifold with index μ (≤v) isometrically immersed into N_v^n. If the mean curvature of M_μ~m in N_v^n vanishes identically, then M_μ~m is called an extremal submanifold. Particularly, an extremal submanifold in N with μ=0 and m=n-v is called a maximal spacelike submanifold.
文摘In this paper,a basic estimate for the conditional Riemannian Brownian motion on a complete manifold with non-negative Ricci curvature is established.Applying it to the heat kernel estimate of the operator 1/2△+b,we obtain the Aronson′s estimate for the operator 1/2△+b,which can be regarded as an extension of Peter Li and S.T.Yau's heat kernel estimate for the Laplace-Beltrami operator.
文摘In this paper, we study the infinity behavior of the bounded subharmonic functions on a Ricci non-negative Riemannian manifold M. We first show that if h is a bounded subharmonic function. If we further assume that the Laplacian decays pointwisely faster than quadratically we show that h approaches its supremun pointwisely at infinity, under certain auxiliary conditions on the volume growth of M. In particular, our result applies to the case when the Riemannian manifold has maximum volume growth. We also derive a representation formula in our paper, from which one can easily derive Yau’s Liouville theorem on bounded harmonic functions.