传统光学字符识别(Optical Character Recognition,OCR)方法一般只提取图像亮度特征,在图像退化较严重时识别准确率不高。针对这一问题,提出一种新的扫描字符特征提取方法。除各通道亮度外,还提取像素位置、亮度的一阶导、二阶导等特征...传统光学字符识别(Optical Character Recognition,OCR)方法一般只提取图像亮度特征,在图像退化较严重时识别准确率不高。针对这一问题,提出一种新的扫描字符特征提取方法。除各通道亮度外,还提取像素位置、亮度的一阶导、二阶导等特征构成特征图像,并根据各个特征对图像的贡献程度进行加权处理。计算以当前像素为中心的局部区域特征图像块的协方差矩阵作为当前像素的描述子,然后在黎曼空间对字符实施分类。实验结果表明,采用典型的结构化分类器时,该特征提取方法对字符识别的准确率高于传统方法,表现出较强的鲁棒性。展开更多
文摘传统光学字符识别(Optical Character Recognition,OCR)方法一般只提取图像亮度特征,在图像退化较严重时识别准确率不高。针对这一问题,提出一种新的扫描字符特征提取方法。除各通道亮度外,还提取像素位置、亮度的一阶导、二阶导等特征构成特征图像,并根据各个特征对图像的贡献程度进行加权处理。计算以当前像素为中心的局部区域特征图像块的协方差矩阵作为当前像素的描述子,然后在黎曼空间对字符实施分类。实验结果表明,采用典型的结构化分类器时,该特征提取方法对字符识别的准确率高于传统方法,表现出较强的鲁棒性。