The objective of this study was to verify the supposition that efflux might be involved in the drug resistance of Riemerella anatipestifer isolates. Two broad-spectrum effiux pump inhibitors, carbonyl cyanide 3-chloro...The objective of this study was to verify the supposition that efflux might be involved in the drug resistance of Riemerella anatipestifer isolates. Two broad-spectrum effiux pump inhibitors, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and Phe-Arg-β-naphthylamide (PAL3N), on the contribution of minimum inhibitory concentrations of amikacin, streptomycin, chloramphenicol, tetracycline, ceftdaxone, ceftazidime, nalidixic acid, levofloxacin, enrofloxacin, as well as ciprofloxacin against 69 clinical R. anatipestifer isolates were investigated. We first reported that the two efflux pump inhibitors could restore the antimicrobial susceptibility of R. anatipestiferisolates. It is suggested that active efflux system is possible to be linked with the development of resistance in R. anatipestifer isolates.展开更多
Riemerella anatipestifer is the causative agent of septicemia anserum exsudativa in ducks. Its pathogenesis and virulence factors are still unclear. The glycelytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GA...Riemerella anatipestifer is the causative agent of septicemia anserum exsudativa in ducks. Its pathogenesis and virulence factors are still unclear. The glycelytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an anchorless and multifunctional protein on the surface of several pathogenic microorganisms, is involved in virulence and adhesion. Whether homologs of GAPDH exist, and display similar characteristics in R. anatipestifer (RaGAPDH) has not been determined. In our research, the RaGAPDH activity from various R. anatipestifer isolates was confirmed. Twenty-two gapdh genes from genornic DNA of R. anatipestifer isolates were cloned and sequenced for phylogenetic analysis. The distribution of RaGAPDH in R. anatipestifer CZ2 strain was confirmed by antisera to recombinant RaGAPDH. The ability of purified RaGAPDH to bind host proteins was analyzed by solid-phase ligandbinding assay. Results revealed that all R. anatipestifer isolates showed different levels of GAPDH activity except four strains, which contained a gapdh-like gene. The gapdh of R. anatipestifer, which is located phylogenetically in the same branch as enterohemorrhagic Escherichia coil (EHEC), belonged to class I GAPDH, and encoded a 36.7-kDa protein. All RaGAPDH-encoding gene sequences from field isolates of R. anatipestiferdisplayed 100% homology. The RaGAPDH localized on the extracellular membrane of several R. anatipestifer strains. Further, it was released into the culture medium, and exhibited GAPDH enzyme activity. We also confirmed the binding of RaGAPDH to plasminogen and fibrinogen. These results demonstrated that GAPDH was present in R. anatipestifer, although not in all strains, and that RaGAPDH might contribute to the microorganism's virulence.展开更多
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (IRT13063)the National Natural Science Foundation of China (31072169)
文摘The objective of this study was to verify the supposition that efflux might be involved in the drug resistance of Riemerella anatipestifer isolates. Two broad-spectrum effiux pump inhibitors, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and Phe-Arg-β-naphthylamide (PAL3N), on the contribution of minimum inhibitory concentrations of amikacin, streptomycin, chloramphenicol, tetracycline, ceftdaxone, ceftazidime, nalidixic acid, levofloxacin, enrofloxacin, as well as ciprofloxacin against 69 clinical R. anatipestifer isolates were investigated. We first reported that the two efflux pump inhibitors could restore the antimicrobial susceptibility of R. anatipestiferisolates. It is suggested that active efflux system is possible to be linked with the development of resistance in R. anatipestifer isolates.
基金Project supported by the Fundamental Research Funds of the Central Universities of China(No.XDJK2013C009)
文摘Riemerella anatipestifer is the causative agent of septicemia anserum exsudativa in ducks. Its pathogenesis and virulence factors are still unclear. The glycelytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an anchorless and multifunctional protein on the surface of several pathogenic microorganisms, is involved in virulence and adhesion. Whether homologs of GAPDH exist, and display similar characteristics in R. anatipestifer (RaGAPDH) has not been determined. In our research, the RaGAPDH activity from various R. anatipestifer isolates was confirmed. Twenty-two gapdh genes from genornic DNA of R. anatipestifer isolates were cloned and sequenced for phylogenetic analysis. The distribution of RaGAPDH in R. anatipestifer CZ2 strain was confirmed by antisera to recombinant RaGAPDH. The ability of purified RaGAPDH to bind host proteins was analyzed by solid-phase ligandbinding assay. Results revealed that all R. anatipestifer isolates showed different levels of GAPDH activity except four strains, which contained a gapdh-like gene. The gapdh of R. anatipestifer, which is located phylogenetically in the same branch as enterohemorrhagic Escherichia coil (EHEC), belonged to class I GAPDH, and encoded a 36.7-kDa protein. All RaGAPDH-encoding gene sequences from field isolates of R. anatipestiferdisplayed 100% homology. The RaGAPDH localized on the extracellular membrane of several R. anatipestifer strains. Further, it was released into the culture medium, and exhibited GAPDH enzyme activity. We also confirmed the binding of RaGAPDH to plasminogen and fibrinogen. These results demonstrated that GAPDH was present in R. anatipestifer, although not in all strains, and that RaGAPDH might contribute to the microorganism's virulence.