Let { E i∶i∈I } be a family of Archimedean Riesz algebras.The product of Riesz algebras is denoted by Π i∈I E i .The main result in this paper is the following conclusion:there ...Let { E i∶i∈I } be a family of Archimedean Riesz algebras.The product of Riesz algebras is denoted by Π i∈I E i .The main result in this paper is the following conclusion:there exists a completely regular Hausdorff space X such that Π i∈I E i is Riesz algebra isomorphic to C(X) if and only if for every i∈I there exists a completely regular Hausdorff space X i such that E i is Riesz algebra isomorphic to C(X i) .展开更多
Let E be an Archimedean Riesz algebra possessing a weak unit element e and a maximal disjoint system {e,: i∈I} in which e, is a projection element for each i. The principal band generated by eiis denoted by B(ei). T...Let E be an Archimedean Riesz algebra possessing a weak unit element e and a maximal disjoint system {e,: i∈I} in which e, is a projection element for each i. The principal band generated by eiis denoted by B(ei). The main result in this paper says that if there exists a completely regular Hausdorff space X such that E is Riesz algebra isomorphic to C(X) then for every i ∈ I there exists a completely regular Hausdorff space X, such that B(ei) is Riesz algebra isomorphic to C(Xi). Under an additional condition the inverse holds.展开更多
The author obtains an algebraic version of the main result from his previous paper 'A characterization of Riesz spaces which are Riesz isomorphic to C(X) for some completely regular space X', and also studies...The author obtains an algebraic version of the main result from his previous paper 'A characterization of Riesz spaces which are Riesz isomorphic to C(X) for some completely regular space X', and also studies the relations among some conditions used therein.展开更多
文摘Let { E i∶i∈I } be a family of Archimedean Riesz algebras.The product of Riesz algebras is denoted by Π i∈I E i .The main result in this paper is the following conclusion:there exists a completely regular Hausdorff space X such that Π i∈I E i is Riesz algebra isomorphic to C(X) if and only if for every i∈I there exists a completely regular Hausdorff space X i such that E i is Riesz algebra isomorphic to C(X i) .
文摘Let E be an Archimedean Riesz algebra possessing a weak unit element e and a maximal disjoint system {e,: i∈I} in which e, is a projection element for each i. The principal band generated by eiis denoted by B(ei). The main result in this paper says that if there exists a completely regular Hausdorff space X such that E is Riesz algebra isomorphic to C(X) then for every i ∈ I there exists a completely regular Hausdorff space X, such that B(ei) is Riesz algebra isomorphic to C(Xi). Under an additional condition the inverse holds.
文摘The author obtains an algebraic version of the main result from his previous paper 'A characterization of Riesz spaces which are Riesz isomorphic to C(X) for some completely regular space X', and also studies the relations among some conditions used therein.