In order to get atomic smooth rigid disk substrate surface, ultra-fined alumina slurry and nanometer silica slurry are prepared, and two steps chemical-mechanical polishing (CMP) of rigid disk substrate in the two s...In order to get atomic smooth rigid disk substrate surface, ultra-fined alumina slurry and nanometer silica slurry are prepared, and two steps chemical-mechanical polishing (CMP) of rigid disk substrate in the two slurries are studied. The results show that, during the first step CMP in the alumina slurry, a high material removal rate is reached, and the average roughness (Ra) and the average waviness (Wa) of the polished surfaces can be decreased from previous 1.4 nm and 1.6 nm to about 0.6 nm and 0.7 nm, respectively. By using the nanometer silica slurry and optimized polishing process parameters in the second step CMP, the Ra and the Wa of the polished surfaces can be further reduced to 0.038 nm and 0.06 am, respectively. Atom force microscopy (AFM) analysis shows that the final polished surfaces are ultra-smooth without micro-defects.展开更多
For the purpose of solving the problem that too large pole tip recession (PTR) is produced in magnetic rigid disk heads by mechanical polishing, a chemical mechanical nano-grinding experiment is performed by using a...For the purpose of solving the problem that too large pole tip recession (PTR) is produced in magnetic rigid disk heads by mechanical polishing, a chemical mechanical nano-grinding experiment is performed by using a float-piece polisher with a tin plate to achieve a more plane and smoother surface. A basal solution, addition agents and a range of pH value are suitably selected to find a kind of slurry, with which the PTR can be controlled on sub-nanometer scale and the giant magnetic resistance (GMR) corrosion and electrostatic damage (ESD) can be avoided. Moreover, the cause that TiC protrudes from the substrate surface of the heads is studied. The appropriate shape and size of diamond abrasive are selected according to the chemical activation of A1203 and TiC in the same slurry. In this way, the chemical and mechanical interactions are optimized and the optimal surface that has small PTR and TiC asperity is achieved. Ultimatily, the chemical mechanical nano-grinding in combination with mechanical nano-grinding is adopted. Sub-nanometer PTR is achieved and the TiC asperity is eliminated by the chemical mechanical nano-grinding with large size ofmonocrystalline followed by mechanical nano-grinding with smalle polycrystalline diamonds.展开更多
The problem of a rigid disk acting with normal force on saturated soil was studied using Biot consolidation theory and integral equation method and the Merchant model to describe the saturated soil rheology. Using int...The problem of a rigid disk acting with normal force on saturated soil was studied using Biot consolidation theory and integral equation method and the Merchant model to describe the saturated soil rheology. Using integral transform techniques, general solutions of Biot consolidation functions and the dual integral equations of a rigid disk on saturated soil were established based on the boundary conditions. These equations can be simplified using Laplace-Hankel and Abel transform methods. The numerical solutions of the integral equations, and the corresponding inversion transform were used to obtain the settlement and contact stresses of the rigid disk. Numerical examples showed that the soil settlement is small if only consolidation is considered, so the soil rheology must be taken into account to calculate the soil settlement. Numerical solution of Hankel inverse transform is also given in this paper.展开更多
研究了流体初始马赫数为2.0时,探测器的存在与否对刚性盘-缝-带型降落伞系统气动减速性能以及流场流体结构特性的影响.对于非定常可压缩流体的数值模拟,流场采用了三层块结构自适应网格加密技术,配合混合形式的TCD (tuned center differ...研究了流体初始马赫数为2.0时,探测器的存在与否对刚性盘-缝-带型降落伞系统气动减速性能以及流场流体结构特性的影响.对于非定常可压缩流体的数值模拟,流场采用了三层块结构自适应网格加密技术,配合混合形式的TCD (tuned center difference)和WENO (weighted essentially non-oscillatory)计算格式以及基于拉伸涡亚格子模型的大涡模拟方法来处理超音速流中的激波以及大尺度湍流旋涡结构等.结果表明:无探测器时,降落伞系统的流场结构稳定,扰动较小;有探测器存在时,探测器后端的湍流尾迹和伞衣内部逆向运动溢出的流体与伞衣前端的弓形激波周期性的相互作用,使得激波位置发生前移、激波倾角变小,伞衣内部流场难以达到平衡稳定状态.这加剧了降落伞系统的气动阻力振荡脉动变化,降低了降落伞系统气动阻力系数,同时也使得降落伞系统流场尾迹结构更加复杂.展开更多
基金This project is supported by National Basic Research Program of China (973 Program, N0.2003CB716201)National Natural Science Foundation of China (No.50575131)Science Foundation of Shanghai Municipal Commission of Science and Technology, China(No.0452nm013).
文摘In order to get atomic smooth rigid disk substrate surface, ultra-fined alumina slurry and nanometer silica slurry are prepared, and two steps chemical-mechanical polishing (CMP) of rigid disk substrate in the two slurries are studied. The results show that, during the first step CMP in the alumina slurry, a high material removal rate is reached, and the average roughness (Ra) and the average waviness (Wa) of the polished surfaces can be decreased from previous 1.4 nm and 1.6 nm to about 0.6 nm and 0.7 nm, respectively. By using the nanometer silica slurry and optimized polishing process parameters in the second step CMP, the Ra and the Wa of the polished surfaces can be further reduced to 0.038 nm and 0.06 am, respectively. Atom force microscopy (AFM) analysis shows that the final polished surfaces are ultra-smooth without micro-defects.
基金National Natural Science Foundation of China(No. 50390061).
文摘For the purpose of solving the problem that too large pole tip recession (PTR) is produced in magnetic rigid disk heads by mechanical polishing, a chemical mechanical nano-grinding experiment is performed by using a float-piece polisher with a tin plate to achieve a more plane and smoother surface. A basal solution, addition agents and a range of pH value are suitably selected to find a kind of slurry, with which the PTR can be controlled on sub-nanometer scale and the giant magnetic resistance (GMR) corrosion and electrostatic damage (ESD) can be avoided. Moreover, the cause that TiC protrudes from the substrate surface of the heads is studied. The appropriate shape and size of diamond abrasive are selected according to the chemical activation of A1203 and TiC in the same slurry. In this way, the chemical and mechanical interactions are optimized and the optimal surface that has small PTR and TiC asperity is achieved. Ultimatily, the chemical mechanical nano-grinding in combination with mechanical nano-grinding is adopted. Sub-nanometer PTR is achieved and the TiC asperity is eliminated by the chemical mechanical nano-grinding with large size ofmonocrystalline followed by mechanical nano-grinding with smalle polycrystalline diamonds.
文摘The problem of a rigid disk acting with normal force on saturated soil was studied using Biot consolidation theory and integral equation method and the Merchant model to describe the saturated soil rheology. Using integral transform techniques, general solutions of Biot consolidation functions and the dual integral equations of a rigid disk on saturated soil were established based on the boundary conditions. These equations can be simplified using Laplace-Hankel and Abel transform methods. The numerical solutions of the integral equations, and the corresponding inversion transform were used to obtain the settlement and contact stresses of the rigid disk. Numerical examples showed that the soil settlement is small if only consolidation is considered, so the soil rheology must be taken into account to calculate the soil settlement. Numerical solution of Hankel inverse transform is also given in this paper.