Robot-automated spraying is widely used in various fields,such as the automotive,metalworking,furniture,and aero-space industries.Spraying quality is influenced by multiple factors,including robot speed,acceleration,e...Robot-automated spraying is widely used in various fields,such as the automotive,metalworking,furniture,and aero-space industries.Spraying quality is influenced by multiple factors,including robot speed,acceleration,end-effector trajectory,and spraying process constraints.To achieve high-quality spraying under the influence of multiple factors,this study proposes a multi-objective optimization method for the spraying trajectory that integrates spraying process constraints into the optimization process.First,a 7-degree-of-freedom rigid-flexible coupling serial spray painting robot system is introduced,which includes a motion decoupling mechanism and a tension amplification mechanism.Subsequently,a paint deposition model for the spray gun was established,and the influence of process constraints on spraying quality was analyzed.Trajectory planning for the spray painting robot,based on the septic B-spline interpolation method,was then performed.Based on this foundation,objective functions and constraint equations for spraying trajectory optimization were established.A multi-objective trajectory optimization method for spraying by the robot is proposed based on the NSGA-Ⅱ,which integrates the spraying process constraints.Finally,a prototype system of a 7-degree-of-freedom rigid-flexible coupling serial spray painting robot was constructed.Simulations and spraying experiments were conducted to verify the effectiveness of the proposed multi-objective trajectory optimization method.This paper presents a multi-objective optimization method for the spraying trajectory of a robot.In the proposed method,the optimized spraying trajectory is generated with the spraying process as the constraint and time,energy consumption,and impact during the spraying operation of the robot as the optimization objectives.展开更多
Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote ...Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote its application and address key issues while identifying future directions.The design theory and methodology of rigid-flexible composite pavement are discussed,followed by a description of its structural and mechanical behavior characteristics.The load stress,temperature stress,and their interactive effects between the asphalt layer and the rigid base were analyzed.It is clarified that the asphalt layer serves a dual role as both a“functional layer”and a“structural layer”.Typical distresses of rigid-flexible composite pavement,which primarily occur in the asphalt layer,were discussed.These distresses include reflective cracking,top-down cracking,rutting,and compressive-shear failure.Generally,the integrity of the rigid base and the interlaminar bonding conditions significantly impact the performance and distress of the asphalt layer.The technology for enhancing the performance of rigid-flexible composite pavement is summarized in three aspects:asphalt layer properties,rigid base integrity,and interlaminar bonding condition.The study concludes that developing high-performance pavement materials based on their structural behaviors is an effective approach to improve the performance and durability of rigid-flexible composite pavement.The integrated design of structure and materials represents the future direction of road design.展开更多
Welded Turnout on Large-span Bridge(WTLB)is a complex multi-layer heterogeneous system and can significantly influence the service performance of High-Speed Railway(HSR).Understanding the coupling dynamic response of ...Welded Turnout on Large-span Bridge(WTLB)is a complex multi-layer heterogeneous system and can significantly influence the service performance of High-Speed Railway(HSR).Understanding the coupling dynamic response of the vehicle and WTLB is essential.Previous research did not consider the dynamic behavior of foundations,leading to an underestimation of the vehicle-turnout-foundation coupling dynamic response,particularly when turnouts were laid on large-span bridges.This study proposes a novel modeling method that includes the foundations,to overcome the previous shortcomings by applying a rigid-flexible coupling system.In this approach,the vehicle was modeled as a rigid body sub-model in a Multi-Body Software(MBS),while WTLB was modeled as a flexible bodies sub-model using Finite Element(FE)software.The modal information from the FE model was imported into the MBS software.The two sub-models were coupled by the wheel-rail contact in the MBS environment and then the Vehicle-turnout-bridge Rigid-flexible Coupling Dynamic(VRCD)calculation model was established and it was discovered that the calculation results showed good agreement with the field test data.Through the VRCD model,the safety of the structure,the stability of the vehicle and the comfort of passengers were investigated,as well as several important infrastructure factors.The results demonstrate that this novel method provides accurate calculations and highlights the complex and significant interactions in the vehicle-turnout-bridge system.展开更多
In the present research two different whole vehicle multibody models are established respectively, including rigid and rigid-flexible coupling multibody vehicle models. The former is all composed by rigid bodies while...In the present research two different whole vehicle multibody models are established respectively, including rigid and rigid-flexible coupling multibody vehicle models. The former is all composed by rigid bodies while in the later model, the flexible rear suspension is built based on the finite element method (FEM) and mode superposition method, in which the deformations of the components are considered. The ride simulations with different speeds are carried out on a 3D digitalized road, and the weighted root mean square (RMS) of accelerations on the seat surface,backrest and at the feet are calculated. The comparison between the responses of the rigid and rigid-flexible coupling multibody models shows that the flexibility of the vehicle parts significantly affects the accelerations at each position, and it is necessary to take the flexibility effects into account for the assessment of ride comfort. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi: 10.1063/2.1301304]展开更多
A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms relate...A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.展开更多
During the launching stage,hydrodynamic pressure and adapters' reaction loads can influence the vehicle's rigid motion as well as cause its structural vibration,which is a typical rigid-flexible coupling dynam...During the launching stage,hydrodynamic pressure and adapters' reaction loads can influence the vehicle's rigid motion as well as cause its structural vibration,which is a typical rigid-flexible coupling dynamic problem. This paper presents a 2-D rigid-flexible coupling model to calculate the vehicle's dynamic responses in that period.The vehicle was equivalent to a flexure beam with axial deformation. Hybrid coordinate and modal superposition methods were used to describe its large rigid displacement and small deformation. By the second Lagrange equation,the vehicle centroid's displacements,rotational angle and modal coordinates were chosen as generalized coordinates and then the vehicle 's rigid-flexible coupling dynamic equations were obtained. By numerical simulation,the results of vehicle's motion parameters and transverse internal loads were acquired.The calculation results showed that differences of the vehicle's motion parameters between the rigid-flexible coupling model and the rigid body assumption are noticeable and the peak magnitude of the vehicle's transverse internal loads in the rigid-flexible coupling model is higher remarkably than that in the rigid body assumption.展开更多
Artificial solid electrolyte interphase(SEI) is promising to inhibit uncontrollable lithium dendrites and enable long cycling stability for lithium metal batteries. However, the essential mechanical stability is limit...Artificial solid electrolyte interphase(SEI) is promising to inhibit uncontrollable lithium dendrites and enable long cycling stability for lithium metal batteries. However, the essential mechanical stability is limited since organic layers generally have low modulus whereas intrinsic brittleness for inorganic ones remains a great concern. Polymer-based SEIs with rigid and flexible chains in adequate mechanical properties are supposed to address this issue. Herein, a homogeneous and mechanically stable diffusion layer is achieved by blending rigid chains of polyphenylene sulfone(PPSU) with flexible chains of poly(vinylidene fluoride)(PVDF) in a hybrid membrane, enabling uniform diffusion and stabilizing the lithium metal anode. The Li||Cu cell with the protected electrode exhibits a long lifetime more than 450 cycles(0.5 m A cm^(-2), 1.0 m A h cm^(-2))(fourfold longer than the control group) with higher average Coulombic efficiency of 98.7%. Enhanced performances are also observed at Li||Li and full cell configurations. The improved performances are attributed to the controlled morphology and stable interphase, according to scanning electron microscopy(SEM) and electrochemical impedance. This research advances the idea of uniform lithium plating and provides a new insight on how to create a homogeneous and mechanically stable diffusion layer using rigid-flexible polymers.展开更多
The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. ...The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. By using Pro / E software,the virtual prototype model of gear transmission system in the speed reducer is established,and the rigid model and rigid-flexible coupling model are simulated respectively in ADAMS to obtain the data of gear meshing force. It can be concluded that rigid-flexible coupling model can reflect the real motion better than rigid model by comparing the simulation data of two models.展开更多
In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was go...In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was gotten based on rigid constraint conditions.The multi-body system(MBS) is a complex mechanism and its components have quite different rigidities.If it is considered as a rigid MBS(RMBS) to do its dynamic analysis,elastic deformation's ignorance will lead to inaccurate analysis.If it is considered as a flexible MBS(FMBS) to establish,analyze,and solve the model,quite large system equations make it difficult to solve.The better method is as follows:the complex mechanism system is regarded as a rigid-flexible coupled system(RFCS) to make dynamic characteristic of rigid components be equivalent,system equation is established by FMBS' way,and system equation dimensions are reduced by transition matrices' introduction.A dynamic analysis method for rigid element and flexible element coupling was presented based on the FMBS.The analyzed crank slide-block mechanism results show that the dynamic analysis method for RFCBLS is quick and convenient.展开更多
The main characteristics, applications, the emphases of manufacturing process are introduced, and the research of new product of rigid-flex Printed Circuit Board (PCB) is also described. In particular, the plasma de...The main characteristics, applications, the emphases of manufacturing process are introduced, and the research of new product of rigid-flex Printed Circuit Board (PCB) is also described. In particular, the plasma desmear process, which is the crucial problems of manufacturing process, is discussed in detail. Samsung 4-layer rigid-flex PCB has been developed successfully, and the qualification rate reaches to 89.4%.展开更多
Previous work examined the effect of the attached stiffness matrix terms on stability of an elastic beam undergoing prescribed large overall motion. The aim of the present work is to extend the nonlinear formulations ...Previous work examined the effect of the attached stiffness matrix terms on stability of an elastic beam undergoing prescribed large overall motion. The aim of the present work is to extend the nonlinear formulations to an elastic beam with free large overall motion. Based on initial stress method, the nonlinear coupling equations of elastic beams are obtained with free large overall motion and the attached stiffness matrix is derived by solving sub-static formulation. The angular velocity and the tip deformation of the elastic pendulum are calculated. The analytical results show that the simulation results of the present model are tabled and coincide with the one-order approximate model. It is shown that the simulation results accord with energy conservation principle.展开更多
This paper aims to explore the deformation of the collided bodies in multibody systems and to effectively simulate the motion path of colliding bodies.First,we describe the geometrically nonlinear problems of material...This paper aims to explore the deformation of the collided bodies in multibody systems and to effectively simulate the motion path of colliding bodies.First,we describe the geometrically nonlinear problems of materials by the total Lagrangian formulation.Second,a first-order integration scheme is used to solve the dynamics equations.An algorithm combining the bi-potential method with the node-to-point contact identification is proposed to solve the interface problems of rigid-flexible interaction collision.To observe the collision process more intuitively,the internal software FER/VIEW is introduced to visualize the results.The accuracy is proved by comparing the proposed method with the analytical solution or another numerical solution.Moreover,the proposed method has more numerical robustness,such as occupying less computer storage,saving the computational cost,and broadening the application range of the bi-potential method.展开更多
The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the ide...The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the idea of “centrifugal potential field', and then the dynamic effects of the nonlinear centrifugal force to system attitude motion were analyzed by approximate calculation; At last, the Lyapunov function based on energy norm was selected, in the condition that only the measured values of attitude and attitude speed are available, and it is proved that the PD feedback control law can ensure the attitude stability during large angle maneuver.展开更多
A mass-rod-disk system consisting of an oscillating mass attached to a rigid rotating disk by an elastic rod is designed to study rigid-flexible coupling mechanism.Suppose the rod is lightweight and has enough stiffne...A mass-rod-disk system consisting of an oscillating mass attached to a rigid rotating disk by an elastic rod is designed to study rigid-flexible coupling mechanism.Suppose the rod is lightweight and has enough stiffness,the theorems of linear momentum and angular momentum are applied to the mass-rod-disk system based on the kinematic description of the system.With respect to two deflections of the mass and one angular velocity of the system,a group of nonlinear differential equations are established where the tangential inertial force,centrifugal force,Coriolis force as well as the moments of additional inertial forces take important effects on the dynamic response.For the sake of description,these three types of inertial forces mentioned before are referred to as additional inertial forces in this paper.The horizontal deflections of the mass and the angular velocity of the disk rotating about a fixed-axis are numerically solved for the prescribed external torque.The oscillating trajectory of the mass is deeply influenced by the additional inertial forces,meanwhile the dynamic fluctuations of the angular velocity and rotary inertia of the system are strongly affected by the mass oscillation.展开更多
Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of ...Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling.展开更多
Aiming at achieving tunable reentrant structures with rigidity and uniformity,respectively,the C-shaped and S-shaped reentrant metamaterials were proposed by the bionic design of animal structures.Utilizing beam theor...Aiming at achieving tunable reentrant structures with rigidity and uniformity,respectively,the C-shaped and S-shaped reentrant metamaterials were proposed by the bionic design of animal structures.Utilizing beam theory and energy methodology,the analytical expressions of the equivalent elastic modulus of the metamaterials were derived.Differences in deformation modes,mechanical properties,and energy absorption capacities were characterized by using experiments and the finite element analysis method.The effects of ligament angle and thickness on the mechanical characteristics of two novel metamaterials were investigated by using a parametric analysis.The results show that the stiffness,deformation mode,stress-strain curve,and energy absorption effects of three metamaterials are significantly different.This design philosophy can be extended from 2D to 3D and is applicable at multiple dimensions.展开更多
Efficient fluid mixing is essential for process intensification.This study proposes a new method in which gas-rigid-flexible composite blades are coupled to enhance chaotic mixing in multiphase flow systems.The rigidi...Efficient fluid mixing is essential for process intensification.This study proposes a new method in which gas-rigid-flexible composite blades are coupled to enhance chaotic mixing in multiphase flow systems.The rigidity and flexibility of the blades were adjusted by intermittent gas injection,which increased the effectiveness of mixing of the liquid-liquid two-phase fluid.This study investigates the influence of different process parameters on the mixing efficiency and quantifies the chaotic characteristics of fluid mixing through pressure-time series analysis of multiscale entropy and the 0–1 test.A high-speed camera recorded the bubble movement in the flow field,while particle image velocimetry(PIV)revealed the enhancement of the properties of the flow field in the system due to the suspended motion of the particles.Using suitable process parameters,gas-rigid-flexible composite blade coupling significantly enhanced the mixing effect,where the mixing time of the G-RFCP system was reduced by 1.42 times compared to that of the CP system.Bubble motion,deformation,and rupture enhanced the mechanical agitation,increasing the intensity of the turbulence and chaotic behaviour.Flow-field analysis indicated a three-fold increase in the vorticity and a 1.04-fold increase in the velocity difference for the G-RFCP system compared with those of the CP system.This study provides theoretical and experimental foundations for understanding chaotic mixing in liquid-liquid two-phase fluids.展开更多
Considering the dynamic variation of roll gap and the transverse distribution of dynamic rolling force along the work roll width direction, the movement and deformation of rolls system, influenced by the coupling of v...Considering the dynamic variation of roll gap and the transverse distribution of dynamic rolling force along the work roll width direction, the movement and deformation of rolls system, influenced by the coupling of vertical chatter and transverse bending vibration, may cause instability and also bring product defect of thickness difference. Therefore, a rigid-flexible coupling vibration model of the rolls system was presented. The influence of dynamic characteristics on the rolling process stability and strip thickness distribution was investigated. Firstly, assuming the symmetry of upper and lower structures of six-high rolling mill, a transverse bending vibration model of three-beam system under simply supported boundary conditions was established, and a semi-analytical solution method was proposed to deal with this model. Then, considering both variation and change rate of the roll gap, a roll vertical chatter model with structure and process coupled was constructed, and the critical rolling speed for self-excited instability was determined by Routh stability criterion. Furthermore, a rigid-flexible coupling vibration model of the rolls system was built by connecting the vertical chatter model and transverse bending vibration model through the distribution of dynamic rolling force, and the dynamic characteristics of rolls system were analyzed. Finally, the strip exit thickness distributions under the stable and unstable rolling process were compared, and the product shape and thickness distribution characteristics were quantitatively evaluated by the crown and maximum longitudinal thickness difference.展开更多
The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role...The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role in assessing the intricate responses of the arresting process,favoring the design of carrier-based aircraft.An efficient and accurate rigid-flexible coupling model for analyzing the dynamic response of the arresting process is proposed.By combining the dynamic characteristics of airframe,landing gear,arresting hook and arresting gear system,the rigid-flexible coupling dynamic model is established to reflect the relative motion of the coupling parts and arresting load.The dynamic model is verified through simulations of landing gear landing drops and by comparing the arresting simulation results with corresponding data in the US military standard.Additionally,simulations of the arresting process under different off-center distance and aircraft yaw angle are conducted to obtain the dynamic response of the aircraft during the arresting process.The result indicates that the rigid-flexible coupling dynamic model proposed is effective for analyzing the arresting dynamics response of carrier-based aircraft.The axial force of the arresting cable on both sides of the hook engagement point,pitch and yaw angle of aircraft are inconsistent under yaw and off-center arresting.The analysis method and obtained results provide valuable references for assessing the dynamic responses of carrier-based aircraft during arresting process and offer valuable in-sights in the design of carrier-based aircraft.展开更多
By the biological construction of a bird neck,a bionic bird-neck multilevel rigid-flexible structure is proposed and some biometric properties are explained.The proposed structure can flexibly deform in six directions...By the biological construction of a bird neck,a bionic bird-neck multilevel rigid-flexible structure is proposed and some biometric properties are explained.The proposed structure can flexibly deform in six directions,which inspires the study of its mechanical properties for flexible deformations.First,the structural configuration and composition are determined based on the study of the anatomical characteristics of the woodpeckers.Since the skeletons and muscles have very different values for the elasticity modulus and the deformation is mostly dependent on the muscle tension,the bionic structure consists of rigid units and bio-syncretic components.For combined deformations,the mechanical model is established by the connectivity matrix to describe the connection of each level.Second,based on the principle of minimum potential energy,an integral form-finding method is proposed for flexible combination deformations.All of the integral forms obtained with the theoretical analysis are compared with the results with Finite Element Analysis.The structural parameters of the bionic structure were then tightly fixed to the actual shape of the bird’s neck and the corresponding overall form took on an"S"shape,which perfectly matched the construction of the bird’s neck.In addition,for the pre-deformation form,by analyzing the potential energy of the bionic structure,due to the adjustable dynamic stiffness property,an explanation is provided for the significant dynamic stability of the bird neck in bending.This study not only proposes a bionic rigid-flexible structure with high spatial accessibility but also explains biological properties of a bird neck based on the study of its mechanics characteristics.Based on the modeling and the mechanical properties of the bionic structure in flexible spatial combination deformations,the multi-steady state,and the variable dynamic stiffness,the bird-neck bionic rigid-flexible structure has significant applications such as aeronautical deployable systems,manipulator positioning,and dynamic stability fields.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.52335002,51925502)。
文摘Robot-automated spraying is widely used in various fields,such as the automotive,metalworking,furniture,and aero-space industries.Spraying quality is influenced by multiple factors,including robot speed,acceleration,end-effector trajectory,and spraying process constraints.To achieve high-quality spraying under the influence of multiple factors,this study proposes a multi-objective optimization method for the spraying trajectory that integrates spraying process constraints into the optimization process.First,a 7-degree-of-freedom rigid-flexible coupling serial spray painting robot system is introduced,which includes a motion decoupling mechanism and a tension amplification mechanism.Subsequently,a paint deposition model for the spray gun was established,and the influence of process constraints on spraying quality was analyzed.Trajectory planning for the spray painting robot,based on the septic B-spline interpolation method,was then performed.Based on this foundation,objective functions and constraint equations for spraying trajectory optimization were established.A multi-objective trajectory optimization method for spraying by the robot is proposed based on the NSGA-Ⅱ,which integrates the spraying process constraints.Finally,a prototype system of a 7-degree-of-freedom rigid-flexible coupling serial spray painting robot was constructed.Simulations and spraying experiments were conducted to verify the effectiveness of the proposed multi-objective trajectory optimization method.This paper presents a multi-objective optimization method for the spraying trajectory of a robot.In the proposed method,the optimized spraying trajectory is generated with the spraying process as the constraint and time,energy consumption,and impact during the spraying operation of the robot as the optimization objectives.
基金This manuscript is supported by the National Key Research and Development Program of China(Grant No.2021YFB2601000)the National Natural Science Foundation of China(Grant Nos.52278437,52008044)+2 种基金the Natural Science Foundation of Hunan Province(Grant No.2022JJ40479)the Science and Technology Innovation Program of Hunan Provincial Department of Transportation(Grant No.202236)the Changsha Outstanding Innovative Youth Training Program Project(Grant No.kq2306009).
文摘Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote its application and address key issues while identifying future directions.The design theory and methodology of rigid-flexible composite pavement are discussed,followed by a description of its structural and mechanical behavior characteristics.The load stress,temperature stress,and their interactive effects between the asphalt layer and the rigid base were analyzed.It is clarified that the asphalt layer serves a dual role as both a“functional layer”and a“structural layer”.Typical distresses of rigid-flexible composite pavement,which primarily occur in the asphalt layer,were discussed.These distresses include reflective cracking,top-down cracking,rutting,and compressive-shear failure.Generally,the integrity of the rigid base and the interlaminar bonding conditions significantly impact the performance and distress of the asphalt layer.The technology for enhancing the performance of rigid-flexible composite pavement is summarized in three aspects:asphalt layer properties,rigid base integrity,and interlaminar bonding condition.The study concludes that developing high-performance pavement materials based on their structural behaviors is an effective approach to improve the performance and durability of rigid-flexible composite pavement.The integrated design of structure and materials represents the future direction of road design.
基金supported by the National Natural Science Foundation of China(U23A20666)the China National Railway Group Corporation Science and Technology Research and Development Program(N2023G083).
文摘Welded Turnout on Large-span Bridge(WTLB)is a complex multi-layer heterogeneous system and can significantly influence the service performance of High-Speed Railway(HSR).Understanding the coupling dynamic response of the vehicle and WTLB is essential.Previous research did not consider the dynamic behavior of foundations,leading to an underestimation of the vehicle-turnout-foundation coupling dynamic response,particularly when turnouts were laid on large-span bridges.This study proposes a novel modeling method that includes the foundations,to overcome the previous shortcomings by applying a rigid-flexible coupling system.In this approach,the vehicle was modeled as a rigid body sub-model in a Multi-Body Software(MBS),while WTLB was modeled as a flexible bodies sub-model using Finite Element(FE)software.The modal information from the FE model was imported into the MBS software.The two sub-models were coupled by the wheel-rail contact in the MBS environment and then the Vehicle-turnout-bridge Rigid-flexible Coupling Dynamic(VRCD)calculation model was established and it was discovered that the calculation results showed good agreement with the field test data.Through the VRCD model,the safety of the structure,the stability of the vehicle and the comfort of passengers were investigated,as well as several important infrastructure factors.The results demonstrate that this novel method provides accurate calculations and highlights the complex and significant interactions in the vehicle-turnout-bridge system.
基金supported by the National Natural Science Foundation of China(51175379)the National Basic Research Program of China(2011CB711200)
文摘In the present research two different whole vehicle multibody models are established respectively, including rigid and rigid-flexible coupling multibody vehicle models. The former is all composed by rigid bodies while in the later model, the flexible rear suspension is built based on the finite element method (FEM) and mode superposition method, in which the deformations of the components are considered. The ride simulations with different speeds are carried out on a 3D digitalized road, and the weighted root mean square (RMS) of accelerations on the seat surface,backrest and at the feet are calculated. The comparison between the responses of the rigid and rigid-flexible coupling multibody models shows that the flexibility of the vehicle parts significantly affects the accelerations at each position, and it is necessary to take the flexibility effects into account for the assessment of ride comfort. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi: 10.1063/2.1301304]
基金Project(10772113) supported by the National Natural Science Foundation of China
文摘A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.
文摘During the launching stage,hydrodynamic pressure and adapters' reaction loads can influence the vehicle's rigid motion as well as cause its structural vibration,which is a typical rigid-flexible coupling dynamic problem. This paper presents a 2-D rigid-flexible coupling model to calculate the vehicle's dynamic responses in that period.The vehicle was equivalent to a flexure beam with axial deformation. Hybrid coordinate and modal superposition methods were used to describe its large rigid displacement and small deformation. By the second Lagrange equation,the vehicle centroid's displacements,rotational angle and modal coordinates were chosen as generalized coordinates and then the vehicle 's rigid-flexible coupling dynamic equations were obtained. By numerical simulation,the results of vehicle's motion parameters and transverse internal loads were acquired.The calculation results showed that differences of the vehicle's motion parameters between the rigid-flexible coupling model and the rigid body assumption are noticeable and the peak magnitude of the vehicle's transverse internal loads in the rigid-flexible coupling model is higher remarkably than that in the rigid body assumption.
基金supported by the National Natural Science Foundation of China (Grant No. 22109008)。
文摘Artificial solid electrolyte interphase(SEI) is promising to inhibit uncontrollable lithium dendrites and enable long cycling stability for lithium metal batteries. However, the essential mechanical stability is limited since organic layers generally have low modulus whereas intrinsic brittleness for inorganic ones remains a great concern. Polymer-based SEIs with rigid and flexible chains in adequate mechanical properties are supposed to address this issue. Herein, a homogeneous and mechanically stable diffusion layer is achieved by blending rigid chains of polyphenylene sulfone(PPSU) with flexible chains of poly(vinylidene fluoride)(PVDF) in a hybrid membrane, enabling uniform diffusion and stabilizing the lithium metal anode. The Li||Cu cell with the protected electrode exhibits a long lifetime more than 450 cycles(0.5 m A cm^(-2), 1.0 m A h cm^(-2))(fourfold longer than the control group) with higher average Coulombic efficiency of 98.7%. Enhanced performances are also observed at Li||Li and full cell configurations. The improved performances are attributed to the controlled morphology and stable interphase, according to scanning electron microscopy(SEM) and electrochemical impedance. This research advances the idea of uniform lithium plating and provides a new insight on how to create a homogeneous and mechanically stable diffusion layer using rigid-flexible polymers.
文摘The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. By using Pro / E software,the virtual prototype model of gear transmission system in the speed reducer is established,and the rigid model and rigid-flexible coupling model are simulated respectively in ADAMS to obtain the data of gear meshing force. It can be concluded that rigid-flexible coupling model can reflect the real motion better than rigid model by comparing the simulation data of two models.
基金Key Laboratory of Fundamental Science for National Defense,China(No. HIT. KLOF. 2009058)
文摘In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was gotten based on rigid constraint conditions.The multi-body system(MBS) is a complex mechanism and its components have quite different rigidities.If it is considered as a rigid MBS(RMBS) to do its dynamic analysis,elastic deformation's ignorance will lead to inaccurate analysis.If it is considered as a flexible MBS(FMBS) to establish,analyze,and solve the model,quite large system equations make it difficult to solve.The better method is as follows:the complex mechanism system is regarded as a rigid-flexible coupled system(RFCS) to make dynamic characteristic of rigid components be equivalent,system equation is established by FMBS' way,and system equation dimensions are reduced by transition matrices' introduction.A dynamic analysis method for rigid element and flexible element coupling was presented based on the FMBS.The analyzed crank slide-block mechanism results show that the dynamic analysis method for RFCBLS is quick and convenient.
文摘The main characteristics, applications, the emphases of manufacturing process are introduced, and the research of new product of rigid-flex Printed Circuit Board (PCB) is also described. In particular, the plasma desmear process, which is the crucial problems of manufacturing process, is discussed in detail. Samsung 4-layer rigid-flex PCB has been developed successfully, and the qualification rate reaches to 89.4%.
基金supported by the National Natural Science Foundation of China (11132007)
文摘Previous work examined the effect of the attached stiffness matrix terms on stability of an elastic beam undergoing prescribed large overall motion. The aim of the present work is to extend the nonlinear formulations to an elastic beam with free large overall motion. Based on initial stress method, the nonlinear coupling equations of elastic beams are obtained with free large overall motion and the attached stiffness matrix is derived by solving sub-static formulation. The angular velocity and the tip deformation of the elastic pendulum are calculated. The analytical results show that the simulation results of the present model are tabled and coincide with the one-order approximate model. It is shown that the simulation results accord with energy conservation principle.
基金supported by the National Youth Science Foundation of China(No.12002290)the National Natural Science Foundation of China(No.11772274)。
文摘This paper aims to explore the deformation of the collided bodies in multibody systems and to effectively simulate the motion path of colliding bodies.First,we describe the geometrically nonlinear problems of materials by the total Lagrangian formulation.Second,a first-order integration scheme is used to solve the dynamics equations.An algorithm combining the bi-potential method with the node-to-point contact identification is proposed to solve the interface problems of rigid-flexible interaction collision.To observe the collision process more intuitively,the internal software FER/VIEW is introduced to visualize the results.The accuracy is proved by comparing the proposed method with the analytical solution or another numerical solution.Moreover,the proposed method has more numerical robustness,such as occupying less computer storage,saving the computational cost,and broadening the application range of the bi-potential method.
文摘The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the idea of “centrifugal potential field', and then the dynamic effects of the nonlinear centrifugal force to system attitude motion were analyzed by approximate calculation; At last, the Lyapunov function based on energy norm was selected, in the condition that only the measured values of attitude and attitude speed are available, and it is proved that the PD feedback control law can ensure the attitude stability during large angle maneuver.
基金This work is supported by the National Natural Science Foundations of China(No.11772071),NSAF(No.U1830115)the Fundamental Research Funds for the Central Universities(No.2020CDJQY-Z004).
文摘A mass-rod-disk system consisting of an oscillating mass attached to a rigid rotating disk by an elastic rod is designed to study rigid-flexible coupling mechanism.Suppose the rod is lightweight and has enough stiffness,the theorems of linear momentum and angular momentum are applied to the mass-rod-disk system based on the kinematic description of the system.With respect to two deflections of the mass and one angular velocity of the system,a group of nonlinear differential equations are established where the tangential inertial force,centrifugal force,Coriolis force as well as the moments of additional inertial forces take important effects on the dynamic response.For the sake of description,these three types of inertial forces mentioned before are referred to as additional inertial forces in this paper.The horizontal deflections of the mass and the angular velocity of the disk rotating about a fixed-axis are numerically solved for the prescribed external torque.The oscillating trajectory of the mass is deeply influenced by the additional inertial forces,meanwhile the dynamic fluctuations of the angular velocity and rotary inertia of the system are strongly affected by the mass oscillation.
基金This work was supported by the National Natural Science Foundation of China(No.52172409)Sichuan Outstanding Youth Fund(No.2022JDJQ0025).
文摘Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling.
基金supported by the Natural Science Foundation of Hebei Province of China(Grant No.A2020502005)the Independent Research and Development Project of China Aerospace Science and Technology Corporation(Grant No.0337000000003)the National Natural Science Foundation of China(Grant No.12272045).
文摘Aiming at achieving tunable reentrant structures with rigidity and uniformity,respectively,the C-shaped and S-shaped reentrant metamaterials were proposed by the bionic design of animal structures.Utilizing beam theory and energy methodology,the analytical expressions of the equivalent elastic modulus of the metamaterials were derived.Differences in deformation modes,mechanical properties,and energy absorption capacities were characterized by using experiments and the finite element analysis method.The effects of ligament angle and thickness on the mechanical characteristics of two novel metamaterials were investigated by using a parametric analysis.The results show that the stiffness,deformation mode,stress-strain curve,and energy absorption effects of three metamaterials are significantly different.This design philosophy can be extended from 2D to 3D and is applicable at multiple dimensions.
基金supports by the National Natural Science Foundation of China(project No.52166004)National key research and development plan project(project No.2022YFC3902000)Yunnan Major Scientific and Technological Projects(grant Nos.202202AG050007,202202AG050002).
文摘Efficient fluid mixing is essential for process intensification.This study proposes a new method in which gas-rigid-flexible composite blades are coupled to enhance chaotic mixing in multiphase flow systems.The rigidity and flexibility of the blades were adjusted by intermittent gas injection,which increased the effectiveness of mixing of the liquid-liquid two-phase fluid.This study investigates the influence of different process parameters on the mixing efficiency and quantifies the chaotic characteristics of fluid mixing through pressure-time series analysis of multiscale entropy and the 0–1 test.A high-speed camera recorded the bubble movement in the flow field,while particle image velocimetry(PIV)revealed the enhancement of the properties of the flow field in the system due to the suspended motion of the particles.Using suitable process parameters,gas-rigid-flexible composite blade coupling significantly enhanced the mixing effect,where the mixing time of the G-RFCP system was reduced by 1.42 times compared to that of the CP system.Bubble motion,deformation,and rupture enhanced the mechanical agitation,increasing the intensity of the turbulence and chaotic behaviour.Flow-field analysis indicated a three-fold increase in the vorticity and a 1.04-fold increase in the velocity difference for the G-RFCP system compared with those of the CP system.This study provides theoretical and experimental foundations for understanding chaotic mixing in liquid-liquid two-phase fluids.
基金supported by the National Natural Science Foundation of China(No.51775038).
文摘Considering the dynamic variation of roll gap and the transverse distribution of dynamic rolling force along the work roll width direction, the movement and deformation of rolls system, influenced by the coupling of vertical chatter and transverse bending vibration, may cause instability and also bring product defect of thickness difference. Therefore, a rigid-flexible coupling vibration model of the rolls system was presented. The influence of dynamic characteristics on the rolling process stability and strip thickness distribution was investigated. Firstly, assuming the symmetry of upper and lower structures of six-high rolling mill, a transverse bending vibration model of three-beam system under simply supported boundary conditions was established, and a semi-analytical solution method was proposed to deal with this model. Then, considering both variation and change rate of the roll gap, a roll vertical chatter model with structure and process coupled was constructed, and the critical rolling speed for self-excited instability was determined by Routh stability criterion. Furthermore, a rigid-flexible coupling vibration model of the rolls system was built by connecting the vertical chatter model and transverse bending vibration model through the distribution of dynamic rolling force, and the dynamic characteristics of rolls system were analyzed. Finally, the strip exit thickness distributions under the stable and unstable rolling process were compared, and the product shape and thickness distribution characteristics were quantitatively evaluated by the crown and maximum longitudinal thickness difference.
基金This study was co-supported by the National Natural Science Foundation of China(No.T2288101)the National Key Research and Development Project,China(No.2020YFC1512500).
文摘The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role in assessing the intricate responses of the arresting process,favoring the design of carrier-based aircraft.An efficient and accurate rigid-flexible coupling model for analyzing the dynamic response of the arresting process is proposed.By combining the dynamic characteristics of airframe,landing gear,arresting hook and arresting gear system,the rigid-flexible coupling dynamic model is established to reflect the relative motion of the coupling parts and arresting load.The dynamic model is verified through simulations of landing gear landing drops and by comparing the arresting simulation results with corresponding data in the US military standard.Additionally,simulations of the arresting process under different off-center distance and aircraft yaw angle are conducted to obtain the dynamic response of the aircraft during the arresting process.The result indicates that the rigid-flexible coupling dynamic model proposed is effective for analyzing the arresting dynamics response of carrier-based aircraft.The axial force of the arresting cable on both sides of the hook engagement point,pitch and yaw angle of aircraft are inconsistent under yaw and off-center arresting.The analysis method and obtained results provide valuable references for assessing the dynamic responses of carrier-based aircraft during arresting process and offer valuable in-sights in the design of carrier-based aircraft.
基金the National Natural Science Foundation of China(12122208,11972254 and 11932015).
文摘By the biological construction of a bird neck,a bionic bird-neck multilevel rigid-flexible structure is proposed and some biometric properties are explained.The proposed structure can flexibly deform in six directions,which inspires the study of its mechanical properties for flexible deformations.First,the structural configuration and composition are determined based on the study of the anatomical characteristics of the woodpeckers.Since the skeletons and muscles have very different values for the elasticity modulus and the deformation is mostly dependent on the muscle tension,the bionic structure consists of rigid units and bio-syncretic components.For combined deformations,the mechanical model is established by the connectivity matrix to describe the connection of each level.Second,based on the principle of minimum potential energy,an integral form-finding method is proposed for flexible combination deformations.All of the integral forms obtained with the theoretical analysis are compared with the results with Finite Element Analysis.The structural parameters of the bionic structure were then tightly fixed to the actual shape of the bird’s neck and the corresponding overall form took on an"S"shape,which perfectly matched the construction of the bird’s neck.In addition,for the pre-deformation form,by analyzing the potential energy of the bionic structure,due to the adjustable dynamic stiffness property,an explanation is provided for the significant dynamic stability of the bird neck in bending.This study not only proposes a bionic rigid-flexible structure with high spatial accessibility but also explains biological properties of a bird neck based on the study of its mechanics characteristics.Based on the modeling and the mechanical properties of the bionic structure in flexible spatial combination deformations,the multi-steady state,and the variable dynamic stiffness,the bird-neck bionic rigid-flexible structure has significant applications such as aeronautical deployable systems,manipulator positioning,and dynamic stability fields.