期刊文献+
共找到265篇文章
< 1 2 14 >
每页显示 20 50 100
Multi-Objective Trajectory Optimization for Rigid-Flexible Coupling Spray-Painting Robot Integrated with Coating Process Constraints
1
作者 Feng Xu Bin Zi +1 位作者 Jingyuan Wang Zhaoyi Yu 《Chinese Journal of Mechanical Engineering》 CSCD 2024年第6期396-413,共18页
Robot-automated spraying is widely used in various fields,such as the automotive,metalworking,furniture,and aero-space industries.Spraying quality is influenced by multiple factors,including robot speed,acceleration,e... Robot-automated spraying is widely used in various fields,such as the automotive,metalworking,furniture,and aero-space industries.Spraying quality is influenced by multiple factors,including robot speed,acceleration,end-effector trajectory,and spraying process constraints.To achieve high-quality spraying under the influence of multiple factors,this study proposes a multi-objective optimization method for the spraying trajectory that integrates spraying process constraints into the optimization process.First,a 7-degree-of-freedom rigid-flexible coupling serial spray painting robot system is introduced,which includes a motion decoupling mechanism and a tension amplification mechanism.Subsequently,a paint deposition model for the spray gun was established,and the influence of process constraints on spraying quality was analyzed.Trajectory planning for the spray painting robot,based on the septic B-spline interpolation method,was then performed.Based on this foundation,objective functions and constraint equations for spraying trajectory optimization were established.A multi-objective trajectory optimization method for spraying by the robot is proposed based on the NSGA-Ⅱ,which integrates the spraying process constraints.Finally,a prototype system of a 7-degree-of-freedom rigid-flexible coupling serial spray painting robot was constructed.Simulations and spraying experiments were conducted to verify the effectiveness of the proposed multi-objective trajectory optimization method.This paper presents a multi-objective optimization method for the spraying trajectory of a robot.In the proposed method,the optimized spraying trajectory is generated with the spraying process as the constraint and time,energy consumption,and impact during the spraying operation of the robot as the optimization objectives. 展开更多
关键词 rigid-flexible coupling spray-painting robot Painting process Multi-objective optimization Trajectory planning NSGA-II
下载PDF
A systematic review of rigid-flexible composite pavement
2
作者 Zhaohui Liu Shiqing Yu +2 位作者 You Huang Li Liu Yu Pan 《Journal of Road Engineering》 2024年第2期203-223,共21页
Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote ... Rigid-flexible composite pavement has gained significant popularity in recent decades.This paper provides a comprehensive review of the research progress concerning rigid-flexible composite pavement,aiming to promote its application and address key issues while identifying future directions.The design theory and methodology of rigid-flexible composite pavement are discussed,followed by a description of its structural and mechanical behavior characteristics.The load stress,temperature stress,and their interactive effects between the asphalt layer and the rigid base were analyzed.It is clarified that the asphalt layer serves a dual role as both a“functional layer”and a“structural layer”.Typical distresses of rigid-flexible composite pavement,which primarily occur in the asphalt layer,were discussed.These distresses include reflective cracking,top-down cracking,rutting,and compressive-shear failure.Generally,the integrity of the rigid base and the interlaminar bonding conditions significantly impact the performance and distress of the asphalt layer.The technology for enhancing the performance of rigid-flexible composite pavement is summarized in three aspects:asphalt layer properties,rigid base integrity,and interlaminar bonding condition.The study concludes that developing high-performance pavement materials based on their structural behaviors is an effective approach to improve the performance and durability of rigid-flexible composite pavement.The integrated design of structure and materials represents the future direction of road design. 展开更多
关键词 rigid-flexible composite pavement Structural mechanical properties Compression-shear failure Integrated design of structure and material
下载PDF
Dynamic response of high-speed railway vehicle and welded turnout on large-span bridges based on rigid-flexible coupling system
3
作者 Xiaopei Cai Zijie Zhong +2 位作者 Albert Lau Qian Zhang Yue Hou 《High-Speed Railway》 2024年第4期203-218,共16页
Welded Turnout on Large-span Bridge(WTLB)is a complex multi-layer heterogeneous system and can significantly influence the service performance of High-Speed Railway(HSR).Understanding the coupling dynamic response of ... Welded Turnout on Large-span Bridge(WTLB)is a complex multi-layer heterogeneous system and can significantly influence the service performance of High-Speed Railway(HSR).Understanding the coupling dynamic response of the vehicle and WTLB is essential.Previous research did not consider the dynamic behavior of foundations,leading to an underestimation of the vehicle-turnout-foundation coupling dynamic response,particularly when turnouts were laid on large-span bridges.This study proposes a novel modeling method that includes the foundations,to overcome the previous shortcomings by applying a rigid-flexible coupling system.In this approach,the vehicle was modeled as a rigid body sub-model in a Multi-Body Software(MBS),while WTLB was modeled as a flexible bodies sub-model using Finite Element(FE)software.The modal information from the FE model was imported into the MBS software.The two sub-models were coupled by the wheel-rail contact in the MBS environment and then the Vehicle-turnout-bridge Rigid-flexible Coupling Dynamic(VRCD)calculation model was established and it was discovered that the calculation results showed good agreement with the field test data.Through the VRCD model,the safety of the structure,the stability of the vehicle and the comfort of passengers were investigated,as well as several important infrastructure factors.The results demonstrate that this novel method provides accurate calculations and highlights the complex and significant interactions in the vehicle-turnout-bridge system. 展开更多
关键词 High-speed railway Welded turnout Large-span bridge Dynamic response rigid-flexible coupling system
下载PDF
Ride comfort evaluation for road vehicle based on rigid-flexible coupling multibody dynamics 被引量:12
4
作者 Guangqiang Wu Guodong Fan Jianbo Guo 《Theoretical & Applied Mechanics Letters》 CAS 2013年第1期39-43,共5页
In the present research two different whole vehicle multibody models are established respectively, including rigid and rigid-flexible coupling multibody vehicle models. The former is all composed by rigid bodies while... In the present research two different whole vehicle multibody models are established respectively, including rigid and rigid-flexible coupling multibody vehicle models. The former is all composed by rigid bodies while in the later model, the flexible rear suspension is built based on the finite element method (FEM) and mode superposition method, in which the deformations of the components are considered. The ride simulations with different speeds are carried out on a 3D digitalized road, and the weighted root mean square (RMS) of accelerations on the seat surface,backrest and at the feet are calculated. The comparison between the responses of the rigid and rigid-flexible coupling multibody models shows that the flexibility of the vehicle parts significantly affects the accelerations at each position, and it is necessary to take the flexibility effects into account for the assessment of ride comfort. C 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi: 10.1063/2.1301304] 展开更多
关键词 ride comfort rigid-flexible coupling multibody system
下载PDF
Complete geometric nonlinear formulation for rigid-flexible coupling dynamics 被引量:4
5
作者 刘铸永 洪嘉振 刘锦阳 《Journal of Central South University》 SCIE EI CAS 2009年第1期119-124,共6页
A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms relate... A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed. 展开更多
关键词 flexible beam rigid-flexible coupling dynamic modeling numerical simulation
下载PDF
Rigid-Flexible Coupling Dynamic Analysis of Sub-Launched Vehicle During the Vertical Tube-Exit Stage 被引量:3
6
作者 Weiyao Zhang Jingbo Gao Cong Wang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第2期26-33,共8页
During the launching stage,hydrodynamic pressure and adapters' reaction loads can influence the vehicle's rigid motion as well as cause its structural vibration,which is a typical rigid-flexible coupling dynam... During the launching stage,hydrodynamic pressure and adapters' reaction loads can influence the vehicle's rigid motion as well as cause its structural vibration,which is a typical rigid-flexible coupling dynamic problem. This paper presents a 2-D rigid-flexible coupling model to calculate the vehicle's dynamic responses in that period.The vehicle was equivalent to a flexure beam with axial deformation. Hybrid coordinate and modal superposition methods were used to describe its large rigid displacement and small deformation. By the second Lagrange equation,the vehicle centroid's displacements,rotational angle and modal coordinates were chosen as generalized coordinates and then the vehicle 's rigid-flexible coupling dynamic equations were obtained. By numerical simulation,the results of vehicle's motion parameters and transverse internal loads were acquired.The calculation results showed that differences of the vehicle's motion parameters between the rigid-flexible coupling model and the rigid body assumption are noticeable and the peak magnitude of the vehicle's transverse internal loads in the rigid-flexible coupling model is higher remarkably than that in the rigid body assumption. 展开更多
关键词 sub-launched vehicle rigid-flexible coupling hybrid coordinate dynamic responses
下载PDF
A homogeneous and mechanically stable artificial diffusion layer using rigid-flexible hybrid polymer for high-performance lithium metal batteries 被引量:2
7
作者 Zhenkang Lin Yuyan Ma +5 位作者 Wei Wang Yu He Menghao Wang Jun Tang Cheng Fan Kening Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期631-638,I0015,共9页
Artificial solid electrolyte interphase(SEI) is promising to inhibit uncontrollable lithium dendrites and enable long cycling stability for lithium metal batteries. However, the essential mechanical stability is limit... Artificial solid electrolyte interphase(SEI) is promising to inhibit uncontrollable lithium dendrites and enable long cycling stability for lithium metal batteries. However, the essential mechanical stability is limited since organic layers generally have low modulus whereas intrinsic brittleness for inorganic ones remains a great concern. Polymer-based SEIs with rigid and flexible chains in adequate mechanical properties are supposed to address this issue. Herein, a homogeneous and mechanically stable diffusion layer is achieved by blending rigid chains of polyphenylene sulfone(PPSU) with flexible chains of poly(vinylidene fluoride)(PVDF) in a hybrid membrane, enabling uniform diffusion and stabilizing the lithium metal anode. The Li||Cu cell with the protected electrode exhibits a long lifetime more than 450 cycles(0.5 m A cm^(-2), 1.0 m A h cm^(-2))(fourfold longer than the control group) with higher average Coulombic efficiency of 98.7%. Enhanced performances are also observed at Li||Li and full cell configurations. The improved performances are attributed to the controlled morphology and stable interphase, according to scanning electron microscopy(SEM) and electrochemical impedance. This research advances the idea of uniform lithium plating and provides a new insight on how to create a homogeneous and mechanically stable diffusion layer using rigid-flexible polymers. 展开更多
关键词 Lithium metal battery Lithium dendrite Uniform diffusion rigid-flexible artificial layer Electrochemical impedance
下载PDF
Dynamic Simulation for Rigid-Flexible Coupling Model of Gear Transmission System Based on ADAMS 被引量:1
8
作者 陈材 石全 +1 位作者 王广彦 戈洪宇 《Journal of Donghua University(English Edition)》 EI CAS 2016年第2期192-195,共4页
The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. ... The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. By using Pro / E software,the virtual prototype model of gear transmission system in the speed reducer is established,and the rigid model and rigid-flexible coupling model are simulated respectively in ADAMS to obtain the data of gear meshing force. It can be concluded that rigid-flexible coupling model can reflect the real motion better than rigid model by comparing the simulation data of two models. 展开更多
关键词 ADAMS gear transmission rigid-flexible coupling SIMULATION
下载PDF
A Study of Dynamic Analysis Method for the Rigid-Flexible Coupled Bar Linkage System 被引量:1
9
作者 陆念力 张广芸 《Journal of Donghua University(English Edition)》 EI CAS 2011年第6期616-620,共5页
In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was go... In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was gotten based on rigid constraint conditions.The multi-body system(MBS) is a complex mechanism and its components have quite different rigidities.If it is considered as a rigid MBS(RMBS) to do its dynamic analysis,elastic deformation's ignorance will lead to inaccurate analysis.If it is considered as a flexible MBS(FMBS) to establish,analyze,and solve the model,quite large system equations make it difficult to solve.The better method is as follows:the complex mechanism system is regarded as a rigid-flexible coupled system(RFCS) to make dynamic characteristic of rigid components be equivalent,system equation is established by FMBS' way,and system equation dimensions are reduced by transition matrices' introduction.A dynamic analysis method for rigid element and flexible element coupling was presented based on the FMBS.The analyzed crank slide-block mechanism results show that the dynamic analysis method for RFCBLS is quick and convenient. 展开更多
关键词 rigid-flexible coupled linkage system flexible element rigid element transition matrices dynamic analysis
下载PDF
Research on Crucial Manufacturing Process of Rigid-Flex PCB 被引量:2
10
作者 汪洋 何为 +3 位作者 何波 龙海荣 刘美才 吴苏 《Journal of Electronic Science and Technology of China》 2006年第1期24-28,共5页
The main characteristics, applications, the emphases of manufacturing process are introduced, and the research of new product of rigid-flex Printed Circuit Board (PCB) is also described. In particular, the plasma de... The main characteristics, applications, the emphases of manufacturing process are introduced, and the research of new product of rigid-flex Printed Circuit Board (PCB) is also described. In particular, the plasma desmear process, which is the crucial problems of manufacturing process, is discussed in detail. Samsung 4-layer rigid-flex PCB has been developed successfully, and the qualification rate reaches to 89.4%. 展开更多
关键词 Printed Circuit Borad (PCB) rigid-flex PCB manufacturing process plasma desmear process
下载PDF
Nonlinear dynamic analysis on rigid-flexible coupling system of an elastic beam 被引量:1
11
作者 Feiyun Zhao Jinyang Liu Jiazhen Hong 《Theoretical & Applied Mechanics Letters》 2012年第2期68-71,共4页
Previous work examined the effect of the attached stiffness matrix terms on stability of an elastic beam undergoing prescribed large overall motion. The aim of the present work is to extend the nonlinear formulations ... Previous work examined the effect of the attached stiffness matrix terms on stability of an elastic beam undergoing prescribed large overall motion. The aim of the present work is to extend the nonlinear formulations to an elastic beam with free large overall motion. Based on initial stress method, the nonlinear coupling equations of elastic beams are obtained with free large overall motion and the attached stiffness matrix is derived by solving sub-static formulation. The angular velocity and the tip deformation of the elastic pendulum are calculated. The analytical results show that the simulation results of the present model are tabled and coincide with the one-order approximate model. It is shown that the simulation results accord with energy conservation principle. 展开更多
关键词 elastic beam nonlinear analysis initial stress method rigid-flexible coupling
下载PDF
Nonsmooth dynamic analysis of rigid-flexible interaction collision
12
作者 Ling TAO Zhongpan LI +2 位作者 Yan LI Huijian CHEN Zhiqiang FENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第11期1731-1746,共16页
This paper aims to explore the deformation of the collided bodies in multibody systems and to effectively simulate the motion path of colliding bodies.First,we describe the geometrically nonlinear problems of material... This paper aims to explore the deformation of the collided bodies in multibody systems and to effectively simulate the motion path of colliding bodies.First,we describe the geometrically nonlinear problems of materials by the total Lagrangian formulation.Second,a first-order integration scheme is used to solve the dynamics equations.An algorithm combining the bi-potential method with the node-to-point contact identification is proposed to solve the interface problems of rigid-flexible interaction collision.To observe the collision process more intuitively,the internal software FER/VIEW is introduced to visualize the results.The accuracy is proved by comparing the proposed method with the analytical solution or another numerical solution.Moreover,the proposed method has more numerical robustness,such as occupying less computer storage,saving the computational cost,and broadening the application range of the bi-potential method. 展开更多
关键词 COLLISION bi-potential method node-to-point rigid-flexible FER/VIEW
下载PDF
MODEL OF CENTRIFUGAL EFFECT AND ATTITUDEMANEUVER STABILITY OF A COUPLEDRIGID-FLEXIBLE SYSTEM
13
作者 李智斌 王照林 +1 位作者 王天舒 柳宁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第5期594-603,共10页
The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the ide... The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the idea of “centrifugal potential field', and then the dynamic effects of the nonlinear centrifugal force to system attitude motion were analyzed by approximate calculation; At last, the Lyapunov function based on energy norm was selected, in the condition that only the measured values of attitude and attitude speed are available, and it is proved that the PD feedback control law can ensure the attitude stability during large angle maneuver. 展开更多
关键词 Coupled rigid-flexible system nonlinear rigid-body motion elastic vibration attitude stability
下载PDF
An analysis on a rigid-flexible coupling system of an oscillating massand a rotating disk
14
作者 Jian Liu Kai Zhang Zhanfang Liu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第5期341-348,共8页
A mass-rod-disk system consisting of an oscillating mass attached to a rigid rotating disk by an elastic rod is designed to study rigid-flexible coupling mechanism.Suppose the rod is lightweight and has enough stiffne... A mass-rod-disk system consisting of an oscillating mass attached to a rigid rotating disk by an elastic rod is designed to study rigid-flexible coupling mechanism.Suppose the rod is lightweight and has enough stiffness,the theorems of linear momentum and angular momentum are applied to the mass-rod-disk system based on the kinematic description of the system.With respect to two deflections of the mass and one angular velocity of the system,a group of nonlinear differential equations are established where the tangential inertial force,centrifugal force,Coriolis force as well as the moments of additional inertial forces take important effects on the dynamic response.For the sake of description,these three types of inertial forces mentioned before are referred to as additional inertial forces in this paper.The horizontal deflections of the mass and the angular velocity of the disk rotating about a fixed-axis are numerically solved for the prescribed external torque.The oscillating trajectory of the mass is deeply influenced by the additional inertial forces,meanwhile the dynamic fluctuations of the angular velocity and rotary inertia of the system are strongly affected by the mass oscillation. 展开更多
关键词 rigid-flexible coupling Additional inertial forces Nonlinear differential equation Motion trajectory
下载PDF
A rigid-flexible coupling finite element model of coupler for analyzing train instability behavior during collision
15
作者 Jingke Zhang Tao Zhu +5 位作者 Bing Yang Xiaorui Wang Shoune Xiao Guangwu Yang Yanwen Liu Quanwei Che 《Railway Engineering Science》 2023年第4期325-339,共15页
Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of ... Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling. 展开更多
关键词 Intermediate coupler rigid-flexible coupling finite element model Design buckling load Actual buckling load Lateral buckling instability
下载PDF
Mechanical design and analysis of bio-inspired reentrant negative Poisson’s ratio metamaterials with rigid-flexible distinction 被引量:2
16
作者 Xinchun Zhang Junyu Wang +4 位作者 Qidong Sun Jingyang Li Sheng Zhou Junfeng Qi Ran Tao 《International Journal of Smart and Nano Materials》 SCIE EI 2024年第1期1-20,共20页
Aiming at achieving tunable reentrant structures with rigidity and uniformity,respectively,the C-shaped and S-shaped reentrant metamaterials were proposed by the bionic design of animal structures.Utilizing beam theor... Aiming at achieving tunable reentrant structures with rigidity and uniformity,respectively,the C-shaped and S-shaped reentrant metamaterials were proposed by the bionic design of animal structures.Utilizing beam theory and energy methodology,the analytical expressions of the equivalent elastic modulus of the metamaterials were derived.Differences in deformation modes,mechanical properties,and energy absorption capacities were characterized by using experiments and the finite element analysis method.The effects of ligament angle and thickness on the mechanical characteristics of two novel metamaterials were investigated by using a parametric analysis.The results show that the stiffness,deformation mode,stress-strain curve,and energy absorption effects of three metamaterials are significantly different.This design philosophy can be extended from 2D to 3D and is applicable at multiple dimensions. 展开更多
关键词 Re-entrant mechanical metamaterials negative poisson’s ratio enhanced stiffness rigid-flexible distinction energy absorption
原文传递
Gas-rigid-flexible compound blade coupling enhanced experimental study on chaotic mixing of multiphase flow
17
作者 Yan Zhang Xinyu Li +3 位作者 Gai Zhang Mingyang Fan Jianxin Xu Hua Wang 《Particuology》 SCIE EI CAS CSCD 2024年第11期356-372,共17页
Efficient fluid mixing is essential for process intensification.This study proposes a new method in which gas-rigid-flexible composite blades are coupled to enhance chaotic mixing in multiphase flow systems.The rigidi... Efficient fluid mixing is essential for process intensification.This study proposes a new method in which gas-rigid-flexible composite blades are coupled to enhance chaotic mixing in multiphase flow systems.The rigidity and flexibility of the blades were adjusted by intermittent gas injection,which increased the effectiveness of mixing of the liquid-liquid two-phase fluid.This study investigates the influence of different process parameters on the mixing efficiency and quantifies the chaotic characteristics of fluid mixing through pressure-time series analysis of multiscale entropy and the 0–1 test.A high-speed camera recorded the bubble movement in the flow field,while particle image velocimetry(PIV)revealed the enhancement of the properties of the flow field in the system due to the suspended motion of the particles.Using suitable process parameters,gas-rigid-flexible composite blade coupling significantly enhanced the mixing effect,where the mixing time of the G-RFCP system was reduced by 1.42 times compared to that of the CP system.Bubble motion,deformation,and rupture enhanced the mechanical agitation,increasing the intensity of the turbulence and chaotic behaviour.Flow-field analysis indicated a three-fold increase in the vorticity and a 1.04-fold increase in the velocity difference for the G-RFCP system compared with those of the CP system.This study provides theoretical and experimental foundations for understanding chaotic mixing in liquid-liquid two-phase fluids. 展开更多
关键词 rigid-flexible compound blades Tracer particle Bubble dynamics Multiphase flow Chaotic mixing characteristics
原文传递
Dynamic modeling and analysis on rigid-flexible coupling between vertical chatter and transverse bending vibration in process of cold rolling
18
作者 Xiao-yong Wang Zhi-ying Gao +1 位作者 Yan-li Xin Qing-dong Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第11期2740-2754,共15页
Considering the dynamic variation of roll gap and the transverse distribution of dynamic rolling force along the work roll width direction, the movement and deformation of rolls system, influenced by the coupling of v... Considering the dynamic variation of roll gap and the transverse distribution of dynamic rolling force along the work roll width direction, the movement and deformation of rolls system, influenced by the coupling of vertical chatter and transverse bending vibration, may cause instability and also bring product defect of thickness difference. Therefore, a rigid-flexible coupling vibration model of the rolls system was presented. The influence of dynamic characteristics on the rolling process stability and strip thickness distribution was investigated. Firstly, assuming the symmetry of upper and lower structures of six-high rolling mill, a transverse bending vibration model of three-beam system under simply supported boundary conditions was established, and a semi-analytical solution method was proposed to deal with this model. Then, considering both variation and change rate of the roll gap, a roll vertical chatter model with structure and process coupled was constructed, and the critical rolling speed for self-excited instability was determined by Routh stability criterion. Furthermore, a rigid-flexible coupling vibration model of the rolls system was built by connecting the vertical chatter model and transverse bending vibration model through the distribution of dynamic rolling force, and the dynamic characteristics of rolls system were analyzed. Finally, the strip exit thickness distributions under the stable and unstable rolling process were compared, and the product shape and thickness distribution characteristics were quantitatively evaluated by the crown and maximum longitudinal thickness difference. 展开更多
关键词 Transverse bending vibration Vertical chatter rigid-flexible coupling vibration Strip thickness distribution Rolling process stability
原文传递
Numerical simulation of aircraft arresting process with an efficient full-scale rigid-flexible coupling dynamic model
19
作者 Haoyuan SHAO Daochun LI +3 位作者 Zi KAN Lanxi BI Zhuoer YAO Jinwu XIANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第5期586-602,共17页
The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role... The arresting process of carrier-based aircraft is widely recognized as a challenging task,characterized by the highest accident rate among all carrier-based aircraft operations.Dynamic simulation plays a crucial role in assessing the intricate responses of the arresting process,favoring the design of carrier-based aircraft.An efficient and accurate rigid-flexible coupling model for analyzing the dynamic response of the arresting process is proposed.By combining the dynamic characteristics of airframe,landing gear,arresting hook and arresting gear system,the rigid-flexible coupling dynamic model is established to reflect the relative motion of the coupling parts and arresting load.The dynamic model is verified through simulations of landing gear landing drops and by comparing the arresting simulation results with corresponding data in the US military standard.Additionally,simulations of the arresting process under different off-center distance and aircraft yaw angle are conducted to obtain the dynamic response of the aircraft during the arresting process.The result indicates that the rigid-flexible coupling dynamic model proposed is effective for analyzing the arresting dynamics response of carrier-based aircraft.The axial force of the arresting cable on both sides of the hook engagement point,pitch and yaw angle of aircraft are inconsistent under yaw and off-center arresting.The analysis method and obtained results provide valuable references for assessing the dynamic responses of carrier-based aircraft during arresting process and offer valuable in-sights in the design of carrier-based aircraft. 展开更多
关键词 Carrier-based aircraft Deck landing rigid-flexible coupling dynamic model Finite element method Dynamic analysis
原文传递
Mechanism properties of a bird-neck bionic rigid-flexible structure
20
作者 Xiuting Sun Jian Xu Zhifeng Qi 《Fundamental Research》 CSCD 2024年第6期1613-1624,共12页
By the biological construction of a bird neck,a bionic bird-neck multilevel rigid-flexible structure is proposed and some biometric properties are explained.The proposed structure can flexibly deform in six directions... By the biological construction of a bird neck,a bionic bird-neck multilevel rigid-flexible structure is proposed and some biometric properties are explained.The proposed structure can flexibly deform in six directions,which inspires the study of its mechanical properties for flexible deformations.First,the structural configuration and composition are determined based on the study of the anatomical characteristics of the woodpeckers.Since the skeletons and muscles have very different values for the elasticity modulus and the deformation is mostly dependent on the muscle tension,the bionic structure consists of rigid units and bio-syncretic components.For combined deformations,the mechanical model is established by the connectivity matrix to describe the connection of each level.Second,based on the principle of minimum potential energy,an integral form-finding method is proposed for flexible combination deformations.All of the integral forms obtained with the theoretical analysis are compared with the results with Finite Element Analysis.The structural parameters of the bionic structure were then tightly fixed to the actual shape of the bird’s neck and the corresponding overall form took on an"S"shape,which perfectly matched the construction of the bird’s neck.In addition,for the pre-deformation form,by analyzing the potential energy of the bionic structure,due to the adjustable dynamic stiffness property,an explanation is provided for the significant dynamic stability of the bird neck in bending.This study not only proposes a bionic rigid-flexible structure with high spatial accessibility but also explains biological properties of a bird neck based on the study of its mechanics characteristics.Based on the modeling and the mechanical properties of the bionic structure in flexible spatial combination deformations,the multi-steady state,and the variable dynamic stiffness,the bird-neck bionic rigid-flexible structure has significant applications such as aeronautical deployable systems,manipulator positioning,and dynamic stability fields. 展开更多
关键词 Bionic structure rigid-flexible structure Spatial combination deformation Integral form Nonlinear restoring force
原文传递
上一页 1 2 14 下一页 到第
使用帮助 返回顶部