The FDM numerical simulation software,ViewCast system,was employed to simulate the low pressure die casting(LPDC)of an aluminum wheel.By analyzing the mold-filling and solidification stage of the LPDC process,the dist...The FDM numerical simulation software,ViewCast system,was employed to simulate the low pressure die casting(LPDC)of an aluminum wheel.By analyzing the mold-filling and solidification stage of the LPDC process,the distribution of liquid fraction,temperature field and solidification pattern of castings were studied.The potential shrinkage defects were predicted to be formed at the rim/spoke junctions,which is in consistence with the X-ray detection result.The distribution pattern of the defects has also been studied.A solution towards reducing such defects has been presented.The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold.Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.展开更多
The characteristics of defect bands in the microstructure of high pressure die casting(HPDC)AE44 magnesium alloy were investigated.Special attention was paid to the effects of process parameters during the HPDC proces...The characteristics of defect bands in the microstructure of high pressure die casting(HPDC)AE44 magnesium alloy were investigated.Special attention was paid to the effects of process parameters during the HPDC process and casting structure on the distribution of defect bands.Results show that the defect bands are solute segregation bands with the enrichment of Al,Ce and La elements,which are basically in the form of Al_(11)RE_(3) phase.There is no obvious aggregation of porosities in the defect bands.The width of the inner defect band is 4-8 times larger than that of the outer one.The variation trends of the distribution of the inner and outer defect bands are not consistent under different process parameters and at different locations of castings.This is due to the discrepancy between the formation mechanisms of double defect bands.The filling and solidification behavior of the melt near the chilling layer is very complicated,which finally leads to a fluctuation of the width and location of the outer defect band.By affecting the content and aggregation degree of externally solidified crystals(ESCs)in the cross section of die castings,the process parameters and casting structure have a great influence on the distribution of the inner defect band.展开更多
AZ91D alloy components were cast by low pressure die casting (LPDC) process. The mechanical properties of cast components with different microstructural features (shrinkage and distribution of Mg17Al12 second phase) w...AZ91D alloy components were cast by low pressure die casting (LPDC) process. The mechanical properties of cast components with different microstructural features (shrinkage and distribution of Mg17Al12 second phase) were investigated under as-cast states. Compared with gravity casting, AZ91D with LPDC has much coarser grain size and second phases(Mg17Al12 and Al8Mn5). The different size and distribution of Mg17Al12 phase and shrinkage correspond to different mechanical properties. The ultimate tensile strengths and elongations are mainly decided by the content and distribution of shrinkage porosity, while the yield strengths are determined by the percentage and distribution of Mg17Al12 phase. The more and finer Mg17Al12 phase in the alloy, the relatively higher the yield strengths are. In the alloy without shrinkage, the mechanical properties are mainly determined by the size and distribution of Mg17Al12 phase. The finer Mg17Al12 phase, the better the mechanical properties are. Under optimal process, the density and mechanical properties of LPDC AZ91D are improved with fine microstructures.展开更多
Three types of near-net shape casting alumi- num parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die c...Three types of near-net shape casting alumi- num parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, A1-7Si-0.3Mg), and semi-solid casting (A356, A1-TSi-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) sig- nificantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi- solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.展开更多
The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied. A mathematical model considering the turbulent flow and heat transfer...The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied. A mathematical model considering the turbulent flow and heat transfer phenomenon during the HPDC process has been established and parallel computation technique was used for the mold filling simulation of the process. The laminar flow characteristics of the LPDC process were studied and a simplified model for the mold filling process of wheel castings has been developed. For the solidification simulation under pressure conditions, the cyclic characteristics and the complicated boundary conditions were considered and techniques to improve the computational efficiency are discussed. A new criterion for predicting shrinkage porosity of Al alloy under low pressure condition has been developed in the solidification simulation process.展开更多
基于FEM(Finite Element Methods)开发的理论模拟对研究铝合金材料铸造成形有重要意义。采用理论模拟研究ZL205A铝合金筒体铸件低压铸造、重力铸造工艺,根据对应工艺获得铸件的实际质量,确定适合产品的理想工艺。研究结果表明,采用浇注...基于FEM(Finite Element Methods)开发的理论模拟对研究铝合金材料铸造成形有重要意义。采用理论模拟研究ZL205A铝合金筒体铸件低压铸造、重力铸造工艺,根据对应工艺获得铸件的实际质量,确定适合产品的理想工艺。研究结果表明,采用浇注系统截面比1:4:5开放式重力浇注工艺,产品外观荧光检查、内部X光探伤检查均满足产品技术需求,且工艺出品率达到55%以上。展开更多
基金funded by the Innovation Fund for Outstanding Scholar of Henan Province(No.0621000700)
文摘The FDM numerical simulation software,ViewCast system,was employed to simulate the low pressure die casting(LPDC)of an aluminum wheel.By analyzing the mold-filling and solidification stage of the LPDC process,the distribution of liquid fraction,temperature field and solidification pattern of castings were studied.The potential shrinkage defects were predicted to be formed at the rim/spoke junctions,which is in consistence with the X-ray detection result.The distribution pattern of the defects has also been studied.A solution towards reducing such defects has been presented.The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold.Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.
基金the National Natural Science Foundation of China(No.51805389)the Key R&D Program of Hubei Province,China(No.2021BAA048)+1 种基金the 111 Project(No.B17034)the fund of the Hubei Key Laboratory of Advanced Technology for Automotive Components,Wuhan University of Technology(No.XDQCKF2021011).
文摘The characteristics of defect bands in the microstructure of high pressure die casting(HPDC)AE44 magnesium alloy were investigated.Special attention was paid to the effects of process parameters during the HPDC process and casting structure on the distribution of defect bands.Results show that the defect bands are solute segregation bands with the enrichment of Al,Ce and La elements,which are basically in the form of Al_(11)RE_(3) phase.There is no obvious aggregation of porosities in the defect bands.The width of the inner defect band is 4-8 times larger than that of the outer one.The variation trends of the distribution of the inner and outer defect bands are not consistent under different process parameters and at different locations of castings.This is due to the discrepancy between the formation mechanisms of double defect bands.The filling and solidification behavior of the melt near the chilling layer is very complicated,which finally leads to a fluctuation of the width and location of the outer defect band.By affecting the content and aggregation degree of externally solidified crystals(ESCs)in the cross section of die castings,the process parameters and casting structure have a great influence on the distribution of the inner defect band.
文摘AZ91D alloy components were cast by low pressure die casting (LPDC) process. The mechanical properties of cast components with different microstructural features (shrinkage and distribution of Mg17Al12 second phase) were investigated under as-cast states. Compared with gravity casting, AZ91D with LPDC has much coarser grain size and second phases(Mg17Al12 and Al8Mn5). The different size and distribution of Mg17Al12 phase and shrinkage correspond to different mechanical properties. The ultimate tensile strengths and elongations are mainly decided by the content and distribution of shrinkage porosity, while the yield strengths are determined by the percentage and distribution of Mg17Al12 phase. The more and finer Mg17Al12 phase in the alloy, the relatively higher the yield strengths are. In the alloy without shrinkage, the mechanical properties are mainly determined by the size and distribution of Mg17Al12 phase. The finer Mg17Al12 phase, the better the mechanical properties are. Under optimal process, the density and mechanical properties of LPDC AZ91D are improved with fine microstructures.
文摘Three types of near-net shape casting alumi- num parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, A1-7Si-0.3Mg), and semi-solid casting (A356, A1-TSi-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) sig- nificantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi- solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.
基金The work was financially supported by the Significant Fundamental Research Development & Planning of China (G2000067208-3) the Significant Project of the National Natural Science Foundation of China (59990470-3)and the internal research fund of Tsing
文摘The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied. A mathematical model considering the turbulent flow and heat transfer phenomenon during the HPDC process has been established and parallel computation technique was used for the mold filling simulation of the process. The laminar flow characteristics of the LPDC process were studied and a simplified model for the mold filling process of wheel castings has been developed. For the solidification simulation under pressure conditions, the cyclic characteristics and the complicated boundary conditions were considered and techniques to improve the computational efficiency are discussed. A new criterion for predicting shrinkage porosity of Al alloy under low pressure condition has been developed in the solidification simulation process.
文摘基于FEM(Finite Element Methods)开发的理论模拟对研究铝合金材料铸造成形有重要意义。采用理论模拟研究ZL205A铝合金筒体铸件低压铸造、重力铸造工艺,根据对应工艺获得铸件的实际质量,确定适合产品的理想工艺。研究结果表明,采用浇注系统截面比1:4:5开放式重力浇注工艺,产品外观荧光检查、内部X光探伤检查均满足产品技术需求,且工艺出品率达到55%以上。