-A ring model is developed to investigate the ultimate strength of tubular X and XX joints in the case that the brace is compressed. In the present analysis, the tubular joint is made of elasto-perfectly-plastic mater...-A ring model is developed to investigate the ultimate strength of tubular X and XX joints in the case that the brace is compressed. In the present analysis, the tubular joint is made of elasto-perfectly-plastic material, and the arch element of the chord section intersecting with the brace is assumed to be rigid. It is found that when 6 plastic hinges for X joint and 8 plastic hinges Tor XX joint appear in the ring, the limit state is reached, and by means of the equivalent ring width Be formula proposed in a previous paper by the authors, the ultimate strength of tubular X and XX joints subjected to compression can be obtained.展开更多
This paper reviews the state-of-the-art of the ring modeling method for tires, emphasizing the differences among the various tire ring models. A general tire ring model was then developed including all the nonlinear ...This paper reviews the state-of-the-art of the ring modeling method for tires, emphasizing the differences among the various tire ring models. A general tire ring model was then developed including all the nonlinear terms in the ring strain and the initial stresses induced by the internal pressure and rotation. The general equations of motion were derived from the Hamilton principle whth the geometric parameters for the model directly obtained from the tire design. The physical parameters were calculated from experimental mode parameters. A numerical example is given for a 195/70 R14-type tire. The analysis shows that the predicted natural frequencies and the tire mode shape agree well with experimental results.展开更多
AIM:To represent mathematically the intersection between the ectatic corneal geometry and the plane of intracorneal ring implants(ICRS)in order to determine the corneal response to ICRS surgery in keratoconus(KC)...AIM:To represent mathematically the intersection between the ectatic corneal geometry and the plane of intracorneal ring implants(ICRS)in order to determine the corneal response to ICRS surgery in keratoconus(KC).Thereafter,to present the concept and early results of a newly derived topography-guided nomogram for ICRS surgery for the treatment of keratectasia. METHODS:The corneal rings plane intersection was modelled to a conic section. Ring effect was the result of:the ring size,position(steep vs flat),location(distance from the geometric centre of the cornea),and the discrepancy between the ring's curvature and the tunnel's curvature.Femtosecond laser was used to create the tunnels and the incision sites were chosen according to the nomogram in order to place the thickest ring in the steepest portion of the cornea regardless of the astigmatism axis of refraction.RESULTS:The conic section had a more prolate shape in the steep area of the cornea than in the flat area,depending on the corneal sagittal curvature. Equal ring size had more flattening effect in the steep area than in the flat area. Thick segment should be implanted under the steep portion of the cornea regardless of the cylinder axis of refraction. Single segment in the steep area was sufficient in early and moderate cases of KC. The new nomogram provided more topographic regularity with significant reduction of astigmatism and better improvement in uncorrected visual acuity(UCVA)and best-corrected visual acuity(BCVA)than the conventional nomogram. CONCLUSION:The newly derived nomogram can produce better results than the conventional nomogram. Moreover,based on this concept,a new nomogram can be integrated into the femtosecond laser software to create topography-guided,customized,elliptical tunnels with modified focal asphericity that allows for customized focal flattening of the irregularly steepened ectatic cornea.展开更多
In this study,a new numerical model of ring shear tester for shear band soil of landslide was established.The special feature of this model is that it considers the mechanism of friction-induced thermal pressurization...In this study,a new numerical model of ring shear tester for shear band soil of landslide was established.The special feature of this model is that it considers the mechanism of friction-induced thermal pressurization,which is potentially an important cause of high-speed catastrophic landslides.The key to the construction of this numerical ring shear model is to realize the THM(thermo-hydro-mechanical)dynamic coupling of soil particles,which includes the processes of frictional heating,thermal pressurization,and strength softening during shearing of solid particles.All of these are completed by using discrete element method.Based on this new model,the characteristics of shear stress change with shear displacement,as well as the variation of temperature and pore pressure in the specimen,are studied at shear rates of 0.055 m/s,0.06 m/s,0.109 m/s and 1.09 m/s,respectively.The results show that the peak strength and residual strength of specimen are significantly reduced when the mechanism of frictioninduced thermal pressurization is considered.The greater the shear rate is,the higher the temperature as well as the pore pressure is.The effect of shear rate on the shear strength is bidirectional.The simulation results demonstrate that this model can effectively simulate the mechanism of friction-induced thermal pressurization of shear band soil during ring shear process,and the shear strength softening in the process.The new numerical ring shear model established in this study is of great significance for studying the dynamic mechanism of high-speed catastrophic landslides.展开更多
To understand the vortex-ring state and to develop an approach for predicting its boundary, a series of model rotor tests of vertical descent and oblique descent have been conducted on a newly-built test apparatus - t...To understand the vortex-ring state and to develop an approach for predicting its boundary, a series of model rotor tests of vertical descent and oblique descent have been conducted on a newly-built test apparatus - the Whirling Beam. The test results showed some unsteady aerodynamic behavior of the model rotor operating in the vortex-ring state. A very irregular variation of the rotortorque at low rate-of-descent was observed here for the first time. We considered it to be the start of the 'power settling' and determined the critical descent velocity according to this observation. A previous criterion for the vortex-ring state was modified to give a semi-empirical method for predicting the entire vortex-ring state boundary. The computed boundary shows a good correlation with the model test results and the flight experiences.展开更多
We present Turing pattern selection in a reaction-diffusion epidemic model under zero-flux boundary conditions. The value of this study is twofold. First, it establishes the amplitude equations for the excited modes, ...We present Turing pattern selection in a reaction-diffusion epidemic model under zero-flux boundary conditions. The value of this study is twofold. First, it establishes the amplitude equations for the excited modes, which determines the stability of amplitudes towards uniform and inhomogeneous perturbations. Second, it illustrates all five categories of Turing patterns close to the onset of Turing bifurcation via numerical simulations which indicates that the model dynamics exhibits complex pattern replication: on increasing the control parameter v, the sequence "H0 hexagons → H0-hexagon-stripe mixtures →stripes → Hπ-hexagon-stripe mixtures → Hπ hexagons" is observed. This may enrich the pattern dynamics in a diffusive epidemic model.展开更多
A new non-perturbative method is used to discuss the persistent current in a one-dimensional mesoscopic ring threaded by a flux φ with electron-phonon interaction in the lattice model. The current is periodic in φ w...A new non-perturbative method is used to discuss the persistent current in a one-dimensional mesoscopic ring threaded by a flux φ with electron-phonon interaction in the lattice model. The current is periodic in φ with a flux quantum φ 0 and the electron-phonon interaction suppresses the persistent current. By considering the contributions of many-phonon correlations, we could obtain more accurate results.展开更多
Tree ring dating plays an important role in obtaining past climate information.The fundamental study of obtaining tree ring samples in typical climate regions is particularly essential.The optimum distribution of tree...Tree ring dating plays an important role in obtaining past climate information.The fundamental study of obtaining tree ring samples in typical climate regions is particularly essential.The optimum distribution of tree ring sampling sites based on climate information from the Climate Observation Network(ORPOM model) is presented in this article.In this setup,the tree rings in a typical region are used for surface representation,by applying excellent correlation with the climate information as the main principle.Taking the Horqin Sandy Land in the cold and arid region of China as an example,the optimum distribution range of the tree ring sampling sites was obtained through the application of the ORPOM model,which is considered a reasonably practical scheme.展开更多
The ring-banded spherulite is a special morphology of polymer crystals and has attracted considerable attention over recent decades. In this study, a new phase field model with polymer characteristics is established t...The ring-banded spherulite is a special morphology of polymer crystals and has attracted considerable attention over recent decades. In this study, a new phase field model with polymer characteristics is established to investigate the emergence and formation mechanism of the ring-banded spherulites of crystalline polymers. The model consists of a nonconserved phase field representing the phase transition and a temperature field describing the diffusion of the released latent heat. The corresponding model parameters can be obtained from experimentally accessible material parameters.Two-dimensional calculations are carried out for the ring-banded spherulitic growth of polyethylene film under a series of crystallization temperatures. The results of these calculations demonstrate that the formation of ring-banded spherulites can be triggered by the self-generated thermal field. Moreover, some temperature-dependent characteristics of the ring-banded spherulites observed in experiments are reproduced by simulations, which may help to study the effects of crystallization temperature on the ring-banded structures.展开更多
Because growth ring data have temporal features, time series analysis can be used to simulate and reveal changes in the life of a tree and contribute to plantation management. In this study, the autoregressive(AR) and...Because growth ring data have temporal features, time series analysis can be used to simulate and reveal changes in the life of a tree and contribute to plantation management. In this study, the autoregressive(AR) and moving average modeling method was used to simulate the time series for growth ring density in a larch plantation with different initial planting densities. We adopted the Box–Jenkins method for the modeling, which was initially based on an intuitive analysis of sequence graphs followed by the augmented Dickey–Fuller stationarity test. The order p and q of the ARMA(p, q) model was determined based on the autocorrelation and partial correlation coefficient figure truncated on the respective order.Through the residual judgment, the model AR(2) was only fitted to the larch growth ring density series for the plantation with the 1.5 9 2.0 m^2 initial planting density.Because the residuals series for the other three series was not shown as a white noise sequence, the modeling was rerun. Larch wood from the initial planting density of2.0 9 2.0 m^2 was modeled by ARMA(2, 1), and ARMA((1, 5), 3) fitted to the 2.5 9 2.5 m^2 initial planting density,and the 3.0 9 3.0 m^2 was modeled by AR(1, 2, 5).Although the ARMA modeling can simulate the change in growth ring density, data for the different growth ring time series were described by different models. Thus, time series modeling can be suitable for growth ring data analysis, revealing the time domain and frequency domain of growth ring data.展开更多
The Substorm Current Wedge (SCW) occurrence in the late growth and onset phases of substorms was proposed as the current system which disrupts cross-tail current by diverting it to the ionosphere. The closure curren...The Substorm Current Wedge (SCW) occurrence in the late growth and onset phases of substorms was proposed as the current system which disrupts cross-tail current by diverting it to the ionosphere. The closure current for the SCW originally was suggested to be the strong westward auroral electrojet (WEJ). However, the SCW-WEJ system has no viable generator current. Similarly, the asymmetric or Partial Ring Current (PRC) increases in strength during the growth phase, and is sometimes associated with an enhanced Region 2 field-aligned current (FAC) closing to the ionosphere, but specifics of that closure have been lacking. Here we present a tmifying picture which includes the SCW post- and pre-midnight (AM and PM, respectively) currents and a generator current in the midnight portion of the PRC system, with these currents based upon a model of the nightside magnetotail magnetic geometry. That geometry consists of open north and south lobe regions surrounding a plasmasheet with two types of closed field line regions-stretched lines in the central part of the plasmasheet (SPS) and dipolar lines (DPS) between the low lati- tude boundary layer (LLBL) regions and the SPS. There is also an important plasmasheet transition region (TPS) in which the dipolar field near the plasmapause gradually transforms to stretched lines near the earthward edge of the SPS, and in which the midnight part of the PRC flows. We propose that our proposed near-onset current system consists of a central current which be- comes part of the midnight sector PRC and which is the generator, to which are linked two three-part current systems, one on the dawnside and one on the duskside. The three-part systems consist of up and down FACs closing as Pedersen currents in the iono- sphere. These 3-part systems are not activated until near-onset is reached, because of a lack of ionospheric conductivity in the appropriate locations where the Pedersen current closure occurs. The initial downward FAC of the 3-part dawnside system and the final upward FAC of the 3-part duskside system correspond to the AM and PM current segments, respectively, of the originally proposed SCW.展开更多
Natural fragmentation of warheads that detonates causes the casing of the warhead to split into various sized fragments through shear or radial fractures depending on the toughness,density,and grain size of the materi...Natural fragmentation of warheads that detonates causes the casing of the warhead to split into various sized fragments through shear or radial fractures depending on the toughness,density,and grain size of the material.The best known formula for the prediction of the size distribution is the Mott formulae,which is further examined by Grady and Kipp by investigating more carefully the statistical most random way of portioning a given area into a number of entities.We examine the fragmentation behavior of radially expanding steel rings cut from a 25 mm warhead by using an in house smooth particle hydrodynamic(SPH) simulation code called REGULUS.Experimental results were compared with numerical results applying varying particle size and stochastic fracture strain.The numerically obtained number of fragments was consistent with experimental results.Increasing expansion velocity of the rings increases the number of fragments.Statistical variation of the material parameters influences the fragment characteristics,especially for low expansion velocities.A least square regression fit to the cumulative number of fragments by applying a generalized Mott distribution shows that the shape parameter is around 4 for the rings,which is in contrast to the Mott distribution with a shape parameter of 1/2.For initially polar distributed particles,we see signs of a bimodal cumulative fragment distribution.Adding statistical variation in material parameters of the fracture model causes the velocity numerical solutions to become less sensitive to changes in resolution for Cartesian distributed particles.展开更多
Infiltration is an important component of the hydrological cycle. It provides soil moisture in the vadose zone to support plant growth. This study was conducted to compare the validity of four infiltration models with...Infiltration is an important component of the hydrological cycle. It provides soil moisture in the vadose zone to support plant growth. This study was conducted to compare the validity of four infiltration models with measured values from the double ring infiltrometer. The parameters of the four models compared were estimated using the linear regression analysis. The C.C was used to show the performance of the predictability of the models. The RMSE, MAE and MBE were employed to check the anomalies between the predicted and the observed values. The results showed that, average values of the C.C ranged from 0.9294 - 0.9852. The average values of the RMSE were 4.0033, −17.489, 11.2400 and 49.8448;MAE were 3.1341, 15.9802, 10.6525, and 61.4736;and MBE were 0.0786, 9.5755, 0.0007 and 47.0204 for Philip, Horton, Green Ampt and Kostiakov respectively for the wetland soils. Statistical results also from the Fisher’s multiple comparison test show that the mean infiltration rate estimated from the Green Ampt’s, Philip’s and Horton’s model was not significantly different (p > 0.05) from the observed. The results indicated that the Kostiakov’s model had the highest deviations as it overestimated the measured data in all the plots. Comparison of the statistical parameters C.C, RMSE, MAE, and MBE for the four models indicates that the Philip’s model agreed well with the measured data and therefore, performed better than the Green Ampt’s, Horton’s and Kostiakov’s models respectively in that order for Besease wetland soils. Estimation of infiltration rate by the Philip’s model is important in the design of irrigation schemes and scheduling. Therefore, in the absence of measured infiltration data, the Philip’s model could be used to produce infiltration information for inland valley bottom soils that exhibit similar characteristic as Besease wetland soils.展开更多
Experimental studies on load decay and leak rate of O-rings made of two kindsof silicone rubber are conducted. The results show that the characteristic of load decay isrelative to the material and temperature of O-rin...Experimental studies on load decay and leak rate of O-rings made of two kindsof silicone rubber are conducted. The results show that the characteristic of load decay isrelative to the material and temperature of O-rings; the rate of load decay increases with the riseof temperature; the effects of load decay on leak rate of O-rings are negligible at roomtemperature, but they are notable at high temperature, and they are related to the material ofO-rings. On the basis of study on the theory of load decay and analysis to the results ofexperiments, a theoretical model is developed to describe the load decay characteristic of O-rings,and it matches the experimental data very well. By the study of time-temperature equivalence of loaddecay, the interconvertting equation of test data of load decay at different temperatures isobtained.展开更多
The rheological behavior of a soft interlayer is critical to understanding slope stability, which is closely related to the water content of the soft interlayer. This study used the soft interlayer of the Permian Maok...The rheological behavior of a soft interlayer is critical to understanding slope stability, which is closely related to the water content of the soft interlayer. This study used the soft interlayer of the Permian Maokou Formation in Southwest China as an example to perform ring shear creep tests with different water content amounts. The effect of water content on the creep properties of the soft interlayer was analyzed, and a new shear rheological model was established. This research produced several findings. First, the ring shear creep deformation of the soft interlayer samples varied with the water content and the maximum instantaneous shear strain increment occurred near the saturated water content. As the water content increased, the cumulative creep increment of the samples increased. Second, the water content significantly affected the long-term strength of the soft interlayer, which decreased with the increase of water content, exhibiting a negative linear correlation. Third, a constitutive equation for the new rheological model was derived, and through fitting of the ring shear creep test data, the validity and applicability of the constitutive equation were proven. This study has developed an important foundation for studying the long-term deformation characteristics of a soft interlayer with varying water content.展开更多
A 3D rigid-plastic and coupled thermo-mechanical FE model for hot ring rolling(HRR) was developed based on DEFORM 3D software,then coupled heat transferring,material flow and temperature distribution of the ring in HR...A 3D rigid-plastic and coupled thermo-mechanical FE model for hot ring rolling(HRR) was developed based on DEFORM 3D software,then coupled heat transferring,material flow and temperature distribution of the ring in HRR were simulated and the effects of process parameters on them were analyzed.The results show that the deformation nonuniformity of ring blank increases with the increase of the rotational speed of driver roll and friction factor or the decrease of the feed rate of idle roll and initial temperature of ring blank.The temperature nonuniformity of ring blank decreases with the increase of the feed rate of idle roll or the decrease of initial temperature of ring blank and friction factor.There is an optimum rotational speed of driver roll under which the temperature distribution of ring blank is the most uniform.The results obtained can provide a guide for forming parameters optimization and quality control.展开更多
The behavior of large deformations of cellular tissues is usually affected by the local properties of cells and their interactions,resulting in folding which acts as an important role in the embryonic development,as w...The behavior of large deformations of cellular tissues is usually affected by the local properties of cells and their interactions,resulting in folding which acts as an important role in the embryonic development,as well as growing and spreading of a tumor,which can rapidly promote the stereo complexity of the architecture of the tissues.In the present study,a cylindrical vertex model is constructed to explore the morphology of the tubular cell sheets subject to an embedded contractile ring.It is found that an inner region of the contractile ring in equilibrium will protrude from the tube wall,and it will suddenly collapse when the contractile strength exceeds a threshold,indicating the occurrence of a bifurcation.These results on the effect of embedded contraction in the tubular shell are quite different from the planar cases,which can reveal the importance of the interaction between the geometric and material non-linearity in cylindrical geometry.The dependence of the large deformation on the bending modulus parameters and contraction strength is also analyzed for the cylindrical cell shell.展开更多
文摘-A ring model is developed to investigate the ultimate strength of tubular X and XX joints in the case that the brace is compressed. In the present analysis, the tubular joint is made of elasto-perfectly-plastic material, and the arch element of the chord section intersecting with the brace is assumed to be rigid. It is found that when 6 plastic hinges for X joint and 8 plastic hinges Tor XX joint appear in the ring, the limit state is reached, and by means of the equivalent ring width Be formula proposed in a previous paper by the authors, the ultimate strength of tubular X and XX joints subjected to compression can be obtained.
基金Supported by the Basic Research Foundation ofTsinghua U niversity(0 912 0 3 40 5)
文摘This paper reviews the state-of-the-art of the ring modeling method for tires, emphasizing the differences among the various tire ring models. A general tire ring model was then developed including all the nonlinear terms in the ring strain and the initial stresses induced by the internal pressure and rotation. The general equations of motion were derived from the Hamilton principle whth the geometric parameters for the model directly obtained from the tire design. The physical parameters were calculated from experimental mode parameters. A numerical example is given for a 195/70 R14-type tire. The analysis shows that the predicted natural frequencies and the tire mode shape agree well with experimental results.
文摘AIM:To represent mathematically the intersection between the ectatic corneal geometry and the plane of intracorneal ring implants(ICRS)in order to determine the corneal response to ICRS surgery in keratoconus(KC).Thereafter,to present the concept and early results of a newly derived topography-guided nomogram for ICRS surgery for the treatment of keratectasia. METHODS:The corneal rings plane intersection was modelled to a conic section. Ring effect was the result of:the ring size,position(steep vs flat),location(distance from the geometric centre of the cornea),and the discrepancy between the ring's curvature and the tunnel's curvature.Femtosecond laser was used to create the tunnels and the incision sites were chosen according to the nomogram in order to place the thickest ring in the steepest portion of the cornea regardless of the astigmatism axis of refraction.RESULTS:The conic section had a more prolate shape in the steep area of the cornea than in the flat area,depending on the corneal sagittal curvature. Equal ring size had more flattening effect in the steep area than in the flat area. Thick segment should be implanted under the steep portion of the cornea regardless of the cylinder axis of refraction. Single segment in the steep area was sufficient in early and moderate cases of KC. The new nomogram provided more topographic regularity with significant reduction of astigmatism and better improvement in uncorrected visual acuity(UCVA)and best-corrected visual acuity(BCVA)than the conventional nomogram. CONCLUSION:The newly derived nomogram can produce better results than the conventional nomogram. Moreover,based on this concept,a new nomogram can be integrated into the femtosecond laser software to create topography-guided,customized,elliptical tunnels with modified focal asphericity that allows for customized focal flattening of the irregularly steepened ectatic cornea.
基金financed by the Research Foundation of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education(Grant No.2020KDZ05)the National Natural Science Foundation of China(Grant Nos.42077239,41702378)。
文摘In this study,a new numerical model of ring shear tester for shear band soil of landslide was established.The special feature of this model is that it considers the mechanism of friction-induced thermal pressurization,which is potentially an important cause of high-speed catastrophic landslides.The key to the construction of this numerical ring shear model is to realize the THM(thermo-hydro-mechanical)dynamic coupling of soil particles,which includes the processes of frictional heating,thermal pressurization,and strength softening during shearing of solid particles.All of these are completed by using discrete element method.Based on this new model,the characteristics of shear stress change with shear displacement,as well as the variation of temperature and pore pressure in the specimen,are studied at shear rates of 0.055 m/s,0.06 m/s,0.109 m/s and 1.09 m/s,respectively.The results show that the peak strength and residual strength of specimen are significantly reduced when the mechanism of frictioninduced thermal pressurization is considered.The greater the shear rate is,the higher the temperature as well as the pore pressure is.The effect of shear rate on the shear strength is bidirectional.The simulation results demonstrate that this model can effectively simulate the mechanism of friction-induced thermal pressurization of shear band soil during ring shear process,and the shear strength softening in the process.The new numerical ring shear model established in this study is of great significance for studying the dynamic mechanism of high-speed catastrophic landslides.
文摘To understand the vortex-ring state and to develop an approach for predicting its boundary, a series of model rotor tests of vertical descent and oblique descent have been conducted on a newly-built test apparatus - the Whirling Beam. The test results showed some unsteady aerodynamic behavior of the model rotor operating in the vortex-ring state. A very irregular variation of the rotortorque at low rate-of-descent was observed here for the first time. We considered it to be the start of the 'power settling' and determined the critical descent velocity according to this observation. A previous criterion for the vortex-ring state was modified to give a semi-empirical method for predicting the entire vortex-ring state boundary. The computed boundary shows a good correlation with the model test results and the flight experiences.
基金Project supported by the Natural Science Foundation of Zhejiang Province of China (Grant No.Y7080041)
文摘We present Turing pattern selection in a reaction-diffusion epidemic model under zero-flux boundary conditions. The value of this study is twofold. First, it establishes the amplitude equations for the excited modes, which determines the stability of amplitudes towards uniform and inhomogeneous perturbations. Second, it illustrates all five categories of Turing patterns close to the onset of Turing bifurcation via numerical simulations which indicates that the model dynamics exhibits complex pattern replication: on increasing the control parameter v, the sequence "H0 hexagons → H0-hexagon-stripe mixtures →stripes → Hπ-hexagon-stripe mixtures → Hπ hexagons" is observed. This may enrich the pattern dynamics in a diffusive epidemic model.
文摘A new non-perturbative method is used to discuss the persistent current in a one-dimensional mesoscopic ring threaded by a flux φ with electron-phonon interaction in the lattice model. The current is periodic in φ with a flux quantum φ 0 and the electron-phonon interaction suppresses the persistent current. By considering the contributions of many-phonon correlations, we could obtain more accurate results.
基金supported by the National Natural Science Foundation of China (Grant No. 50869005)
文摘Tree ring dating plays an important role in obtaining past climate information.The fundamental study of obtaining tree ring samples in typical climate regions is particularly essential.The optimum distribution of tree ring sampling sites based on climate information from the Climate Observation Network(ORPOM model) is presented in this article.In this setup,the tree rings in a typical region are used for surface representation,by applying excellent correlation with the climate information as the main principle.Taking the Horqin Sandy Land in the cold and arid region of China as an example,the optimum distribution range of the tree ring sampling sites was obtained through the application of the ORPOM model,which is considered a reasonably practical scheme.
基金Project supported by the National Key Basic Research Program of China(Grant No.2012CB025903)the National Natural Science Foundation of China(Grant No.11402210)+1 种基金the Northwestern Polytechnical University Foundation for Fundamental Research(Grant No.JCY20130141)the Ministry of Education Fund for Doctoral Students Newcomer Awards of China
文摘The ring-banded spherulite is a special morphology of polymer crystals and has attracted considerable attention over recent decades. In this study, a new phase field model with polymer characteristics is established to investigate the emergence and formation mechanism of the ring-banded spherulites of crystalline polymers. The model consists of a nonconserved phase field representing the phase transition and a temperature field describing the diffusion of the released latent heat. The corresponding model parameters can be obtained from experimentally accessible material parameters.Two-dimensional calculations are carried out for the ring-banded spherulitic growth of polyethylene film under a series of crystallization temperatures. The results of these calculations demonstrate that the formation of ring-banded spherulites can be triggered by the self-generated thermal field. Moreover, some temperature-dependent characteristics of the ring-banded spherulites observed in experiments are reproduced by simulations, which may help to study the effects of crystallization temperature on the ring-banded structures.
基金financially supported by the National Sci-Tech Support Plan of China(Grant No.2015BAD14B05)
文摘Because growth ring data have temporal features, time series analysis can be used to simulate and reveal changes in the life of a tree and contribute to plantation management. In this study, the autoregressive(AR) and moving average modeling method was used to simulate the time series for growth ring density in a larch plantation with different initial planting densities. We adopted the Box–Jenkins method for the modeling, which was initially based on an intuitive analysis of sequence graphs followed by the augmented Dickey–Fuller stationarity test. The order p and q of the ARMA(p, q) model was determined based on the autocorrelation and partial correlation coefficient figure truncated on the respective order.Through the residual judgment, the model AR(2) was only fitted to the larch growth ring density series for the plantation with the 1.5 9 2.0 m^2 initial planting density.Because the residuals series for the other three series was not shown as a white noise sequence, the modeling was rerun. Larch wood from the initial planting density of2.0 9 2.0 m^2 was modeled by ARMA(2, 1), and ARMA((1, 5), 3) fitted to the 2.5 9 2.5 m^2 initial planting density,and the 3.0 9 3.0 m^2 was modeled by AR(1, 2, 5).Although the ARMA modeling can simulate the change in growth ring density, data for the different growth ring time series were described by different models. Thus, time series modeling can be suitable for growth ring data analysis, revealing the time domain and frequency domain of growth ring data.
文摘The Substorm Current Wedge (SCW) occurrence in the late growth and onset phases of substorms was proposed as the current system which disrupts cross-tail current by diverting it to the ionosphere. The closure current for the SCW originally was suggested to be the strong westward auroral electrojet (WEJ). However, the SCW-WEJ system has no viable generator current. Similarly, the asymmetric or Partial Ring Current (PRC) increases in strength during the growth phase, and is sometimes associated with an enhanced Region 2 field-aligned current (FAC) closing to the ionosphere, but specifics of that closure have been lacking. Here we present a tmifying picture which includes the SCW post- and pre-midnight (AM and PM, respectively) currents and a generator current in the midnight portion of the PRC system, with these currents based upon a model of the nightside magnetotail magnetic geometry. That geometry consists of open north and south lobe regions surrounding a plasmasheet with two types of closed field line regions-stretched lines in the central part of the plasmasheet (SPS) and dipolar lines (DPS) between the low lati- tude boundary layer (LLBL) regions and the SPS. There is also an important plasmasheet transition region (TPS) in which the dipolar field near the plasmapause gradually transforms to stretched lines near the earthward edge of the SPS, and in which the midnight part of the PRC flows. We propose that our proposed near-onset current system consists of a central current which be- comes part of the midnight sector PRC and which is the generator, to which are linked two three-part current systems, one on the dawnside and one on the duskside. The three-part systems consist of up and down FACs closing as Pedersen currents in the iono- sphere. These 3-part systems are not activated until near-onset is reached, because of a lack of ionospheric conductivity in the appropriate locations where the Pedersen current closure occurs. The initial downward FAC of the 3-part dawnside system and the final upward FAC of the 3-part duskside system correspond to the AM and PM current segments, respectively, of the originally proposed SCW.
文摘Natural fragmentation of warheads that detonates causes the casing of the warhead to split into various sized fragments through shear or radial fractures depending on the toughness,density,and grain size of the material.The best known formula for the prediction of the size distribution is the Mott formulae,which is further examined by Grady and Kipp by investigating more carefully the statistical most random way of portioning a given area into a number of entities.We examine the fragmentation behavior of radially expanding steel rings cut from a 25 mm warhead by using an in house smooth particle hydrodynamic(SPH) simulation code called REGULUS.Experimental results were compared with numerical results applying varying particle size and stochastic fracture strain.The numerically obtained number of fragments was consistent with experimental results.Increasing expansion velocity of the rings increases the number of fragments.Statistical variation of the material parameters influences the fragment characteristics,especially for low expansion velocities.A least square regression fit to the cumulative number of fragments by applying a generalized Mott distribution shows that the shape parameter is around 4 for the rings,which is in contrast to the Mott distribution with a shape parameter of 1/2.For initially polar distributed particles,we see signs of a bimodal cumulative fragment distribution.Adding statistical variation in material parameters of the fracture model causes the velocity numerical solutions to become less sensitive to changes in resolution for Cartesian distributed particles.
文摘Infiltration is an important component of the hydrological cycle. It provides soil moisture in the vadose zone to support plant growth. This study was conducted to compare the validity of four infiltration models with measured values from the double ring infiltrometer. The parameters of the four models compared were estimated using the linear regression analysis. The C.C was used to show the performance of the predictability of the models. The RMSE, MAE and MBE were employed to check the anomalies between the predicted and the observed values. The results showed that, average values of the C.C ranged from 0.9294 - 0.9852. The average values of the RMSE were 4.0033, −17.489, 11.2400 and 49.8448;MAE were 3.1341, 15.9802, 10.6525, and 61.4736;and MBE were 0.0786, 9.5755, 0.0007 and 47.0204 for Philip, Horton, Green Ampt and Kostiakov respectively for the wetland soils. Statistical results also from the Fisher’s multiple comparison test show that the mean infiltration rate estimated from the Green Ampt’s, Philip’s and Horton’s model was not significantly different (p > 0.05) from the observed. The results indicated that the Kostiakov’s model had the highest deviations as it overestimated the measured data in all the plots. Comparison of the statistical parameters C.C, RMSE, MAE, and MBE for the four models indicates that the Philip’s model agreed well with the measured data and therefore, performed better than the Green Ampt’s, Horton’s and Kostiakov’s models respectively in that order for Besease wetland soils. Estimation of infiltration rate by the Philip’s model is important in the design of irrigation schemes and scheduling. Therefore, in the absence of measured infiltration data, the Philip’s model could be used to produce infiltration information for inland valley bottom soils that exhibit similar characteristic as Besease wetland soils.
基金This project is supported by 863 Program of China (No. 863-2-4-4-7).
文摘Experimental studies on load decay and leak rate of O-rings made of two kindsof silicone rubber are conducted. The results show that the characteristic of load decay isrelative to the material and temperature of O-rings; the rate of load decay increases with the riseof temperature; the effects of load decay on leak rate of O-rings are negligible at roomtemperature, but they are notable at high temperature, and they are related to the material ofO-rings. On the basis of study on the theory of load decay and analysis to the results ofexperiments, a theoretical model is developed to describe the load decay characteristic of O-rings,and it matches the experimental data very well. By the study of time-temperature equivalence of loaddecay, the interconvertting equation of test data of load decay at different temperatures isobtained.
基金supported by the National Natural Science Foundation of China(Grant No.41521001)the Natural Science Foundation of Hubei Province(Grant No.2018CFB385)
文摘The rheological behavior of a soft interlayer is critical to understanding slope stability, which is closely related to the water content of the soft interlayer. This study used the soft interlayer of the Permian Maokou Formation in Southwest China as an example to perform ring shear creep tests with different water content amounts. The effect of water content on the creep properties of the soft interlayer was analyzed, and a new shear rheological model was established. This research produced several findings. First, the ring shear creep deformation of the soft interlayer samples varied with the water content and the maximum instantaneous shear strain increment occurred near the saturated water content. As the water content increased, the cumulative creep increment of the samples increased. Second, the water content significantly affected the long-term strength of the soft interlayer, which decreased with the increase of water content, exhibiting a negative linear correlation. Third, a constitutive equation for the new rheological model was derived, and through fitting of the ring shear creep test data, the validity and applicability of the constitutive equation were proven. This study has developed an important foundation for studying the long-term deformation characteristics of a soft interlayer with varying water content.
基金Project(2006AA04Z135) supported by the National Hi-tech Research and Development Program of ChinaProject(50735005) supported by the National Natural Science Foundation of ChinaProject supported by Northwestern Polytechnical University Foundation for Fundamental Research, China
文摘A 3D rigid-plastic and coupled thermo-mechanical FE model for hot ring rolling(HRR) was developed based on DEFORM 3D software,then coupled heat transferring,material flow and temperature distribution of the ring in HRR were simulated and the effects of process parameters on them were analyzed.The results show that the deformation nonuniformity of ring blank increases with the increase of the rotational speed of driver roll and friction factor or the decrease of the feed rate of idle roll and initial temperature of ring blank.The temperature nonuniformity of ring blank decreases with the increase of the feed rate of idle roll or the decrease of initial temperature of ring blank and friction factor.There is an optimum rotational speed of driver roll under which the temperature distribution of ring blank is the most uniform.The results obtained can provide a guide for forming parameters optimization and quality control.
基金Project supported by the National Natural Science Foundation of China(Nos.11772183 and11832017)
文摘The behavior of large deformations of cellular tissues is usually affected by the local properties of cells and their interactions,resulting in folding which acts as an important role in the embryonic development,as well as growing and spreading of a tumor,which can rapidly promote the stereo complexity of the architecture of the tissues.In the present study,a cylindrical vertex model is constructed to explore the morphology of the tubular cell sheets subject to an embedded contractile ring.It is found that an inner region of the contractile ring in equilibrium will protrude from the tube wall,and it will suddenly collapse when the contractile strength exceeds a threshold,indicating the occurrence of a bifurcation.These results on the effect of embedded contraction in the tubular shell are quite different from the planar cases,which can reveal the importance of the interaction between the geometric and material non-linearity in cylindrical geometry.The dependence of the large deformation on the bending modulus parameters and contraction strength is also analyzed for the cylindrical cell shell.