Magnetosonic (MS) waves are believed to have the ability to affect the dynamics of ring current protons both inside and outside the plasmasphere. However, previous studies have focused primarily on the effect of high-...Magnetosonic (MS) waves are believed to have the ability to affect the dynamics of ring current protons both inside and outside the plasmasphere. However, previous studies have focused primarily on the effect of high-frequency MS waves (f > 20 Hz) on ring current protons. In this study, we investigate interactions between ring current protons and low-frequency MS waves (< 20 Hz) inside the plasmasphere. We find that low-frequency MS waves can effectively accelerate < 20 keV ring current protons on time scales from several hours to a day, and their scattering efficiency is comparable to that due to high-frequency MS waves (>20 Hz), from which we infer that omitting the effect of low-frequency MS waves will considerably underestimate proton depletion at middle pitch angles and proton enhancement at large pitch angles. Therefore, ring current proton modeling should take into account the effects of both low- and highfrequency MS waves.展开更多
波粒相互作用是环电流损失的重要机制之一,但波粒相互作用导致的环电流离子沉降而损失迄今为止缺乏直接的观测证据.基于磁层及电离层卫星的协同观测,本文报道了发生在2015年9月7日,由电磁离子回旋波(EMIC波)导致环电流质子沉降的共轭观...波粒相互作用是环电流损失的重要机制之一,但波粒相互作用导致的环电流离子沉降而损失迄今为止缺乏直接的观测证据.基于磁层及电离层卫星的协同观测,本文报道了发生在2015年9月7日,由电磁离子回旋波(EMIC波)导致环电流质子沉降的共轭观测事件.在等离子体层的内边界,Van Allen Probe B卫星观测到,存在EMIC波的区域和不存在EMIC波的区域相比,离子通量的投掷角分布的各向异性变弱.我们将Van Allen Probe B卫星沿着磁力线投影到电离层高度,同时在该投影区域内DMSP 16卫星在亚极光区域观测到环电流质子沉降.而且,通过从理论上计算质子弹跳平均扩散系数,我们进一步证实观测的EMIC波确实能将环电流质子散射到损失锥中.本文的研究工作为EMIC波导致环电流质子沉降提供了直接的观测证据,揭示了环电流衰减的重要物理机制:EMIC波将环电流质子散射到损失锥中,从而沉降到低高度大气层中而损失.展开更多
Among the most intense emissions in the Earth's magnetosphere,electromagnetic ion cyclotron(EMIC)waves are regarded as a critical candidate contributing to the precipitation losses of ring current protons,which ho...Among the most intense emissions in the Earth's magnetosphere,electromagnetic ion cyclotron(EMIC)waves are regarded as a critical candidate contributing to the precipitation losses of ring current protons,which however lacks direct multi-point observations to establish the underlying physical connection.Based upon a robust conjunction between the satellite pair of Van Allen Probe B and NOAA-19,we perform a detailed analysis to capture simultaneous enhancements of EMIC waves and ring current proton precipitation.By assuming that the ring current proton precipitation is mainly caused by EMIC wave scattering,we establish a physical model between the wave-driven proton diffusion and the ratio of precipitated-to-trapped proton count rates,which is subsequently applied to infer the intensity of EMIC waves required to cause the observed proton precipitation.Our simulations indicate that the model results of EMIC wave intensity,obtained using either the observed or empirical Gaussian wave frequency spectrum,are consistent with the wave observations,within a factor of 1.5.Our study therefore strongly supports the dominant contribution of EMIC waves to the ring current proton precipitation,and offers a valuable means to construct the global profile of EMIC wave intensity using low-altitude NOAA POES proton measurements,which generally have a broad L-shell coverage and high time resolution in favor of near-real-time conversion of the global EMIC wave distribution.展开更多
Phosphazene base,t-BuP2,was employed to catalyze the proton transfer polymerization(PTP)of 2-hydroxyethyl acrylate(HEA),and PTP was further combined with ring-opening polymerization(ROP)to exploit a new type of hybrid...Phosphazene base,t-BuP2,was employed to catalyze the proton transfer polymerization(PTP)of 2-hydroxyethyl acrylate(HEA),and PTP was further combined with ring-opening polymerization(ROP)to exploit a new type of hybrid copolymerization.The studies on homopolymerization showed that t-BuP2 was a particularly efficient catalyst for the polymerization of HEA at room temperature,giving an excellent monomer conversion.Throughout the polymerization,transesterification reactions were unavoidable,which increased the randomness in the structures of the resulting polymers.The studies on copolymerization showed that t-BuP2 could simultaneously catalyze the hybrid copolymerization via the combination of PTP and ROP at 25°C.During copolymerization,HEA not only provided hydroxyl groups to initiate the ROP ofε-caprolactone(CL)but also participated in the polymerization as a monomer for PTP.The copolymer composition was approximately equal to the feed ratio,demonstrating the possibility to adjust the polymeric structure by simply changing the monomer feed ratio.This copolymerization reaction provides a simple method for synthesizing degradable functional copolymers from commercially available materials.Hence,it is important not only in polymer chemistry but also in environmental and biomedical engineering.展开更多
基金supported by the Science and Technology Development Fund of Macao SAR (FDCT) through grants 039/2013/A2supports from the National Natural Science Foundation of China (NSFC) through grants 41525015 and 41774186
文摘Magnetosonic (MS) waves are believed to have the ability to affect the dynamics of ring current protons both inside and outside the plasmasphere. However, previous studies have focused primarily on the effect of high-frequency MS waves (f > 20 Hz) on ring current protons. In this study, we investigate interactions between ring current protons and low-frequency MS waves (< 20 Hz) inside the plasmasphere. We find that low-frequency MS waves can effectively accelerate < 20 keV ring current protons on time scales from several hours to a day, and their scattering efficiency is comparable to that due to high-frequency MS waves (>20 Hz), from which we infer that omitting the effect of low-frequency MS waves will considerably underestimate proton depletion at middle pitch angles and proton enhancement at large pitch angles. Therefore, ring current proton modeling should take into account the effects of both low- and highfrequency MS waves.
文摘波粒相互作用是环电流损失的重要机制之一,但波粒相互作用导致的环电流离子沉降而损失迄今为止缺乏直接的观测证据.基于磁层及电离层卫星的协同观测,本文报道了发生在2015年9月7日,由电磁离子回旋波(EMIC波)导致环电流质子沉降的共轭观测事件.在等离子体层的内边界,Van Allen Probe B卫星观测到,存在EMIC波的区域和不存在EMIC波的区域相比,离子通量的投掷角分布的各向异性变弱.我们将Van Allen Probe B卫星沿着磁力线投影到电离层高度,同时在该投影区域内DMSP 16卫星在亚极光区域观测到环电流质子沉降.而且,通过从理论上计算质子弹跳平均扩散系数,我们进一步证实观测的EMIC波确实能将环电流质子散射到损失锥中.本文的研究工作为EMIC波导致环电流质子沉降提供了直接的观测证据,揭示了环电流衰减的重要物理机制:EMIC波将环电流质子散射到损失锥中,从而沉降到低高度大气层中而损失.
基金supported by the National Natural Science Foundation of China (42188101 and 42025404)the National Key R&D Program of China (2022YFF0503700)+2 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences (XDB41000000)the Fundamental Research Funds for the Central Universities (2042021kf1045,2042021kf1056)the Pre-research projects on Civil Aerospace Technologies (D020308,D020104,D020303).
文摘Among the most intense emissions in the Earth's magnetosphere,electromagnetic ion cyclotron(EMIC)waves are regarded as a critical candidate contributing to the precipitation losses of ring current protons,which however lacks direct multi-point observations to establish the underlying physical connection.Based upon a robust conjunction between the satellite pair of Van Allen Probe B and NOAA-19,we perform a detailed analysis to capture simultaneous enhancements of EMIC waves and ring current proton precipitation.By assuming that the ring current proton precipitation is mainly caused by EMIC wave scattering,we establish a physical model between the wave-driven proton diffusion and the ratio of precipitated-to-trapped proton count rates,which is subsequently applied to infer the intensity of EMIC waves required to cause the observed proton precipitation.Our simulations indicate that the model results of EMIC wave intensity,obtained using either the observed or empirical Gaussian wave frequency spectrum,are consistent with the wave observations,within a factor of 1.5.Our study therefore strongly supports the dominant contribution of EMIC waves to the ring current proton precipitation,and offers a valuable means to construct the global profile of EMIC wave intensity using low-altitude NOAA POES proton measurements,which generally have a broad L-shell coverage and high time resolution in favor of near-real-time conversion of the global EMIC wave distribution.
基金financially supported by the Natural Science Foundation for Excellent Young Scholar of Jiangsu Province (No. BK20170056)the National Natural Science Foundation of China(No. 21304010)+1 种基金the Opening Project of Key Laboratory of Polymer Processing Engineering (South China University of Technology)Ministry of Education, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Phosphazene base,t-BuP2,was employed to catalyze the proton transfer polymerization(PTP)of 2-hydroxyethyl acrylate(HEA),and PTP was further combined with ring-opening polymerization(ROP)to exploit a new type of hybrid copolymerization.The studies on homopolymerization showed that t-BuP2 was a particularly efficient catalyst for the polymerization of HEA at room temperature,giving an excellent monomer conversion.Throughout the polymerization,transesterification reactions were unavoidable,which increased the randomness in the structures of the resulting polymers.The studies on copolymerization showed that t-BuP2 could simultaneously catalyze the hybrid copolymerization via the combination of PTP and ROP at 25°C.During copolymerization,HEA not only provided hydroxyl groups to initiate the ROP ofε-caprolactone(CL)but also participated in the polymerization as a monomer for PTP.The copolymer composition was approximately equal to the feed ratio,demonstrating the possibility to adjust the polymeric structure by simply changing the monomer feed ratio.This copolymerization reaction provides a simple method for synthesizing degradable functional copolymers from commercially available materials.Hence,it is important not only in polymer chemistry but also in environmental and biomedical engineering.