During cold ring rolling process, changing the sizes of forming rolls including driver roll and idle roll will lead to a change of amount of feed Ah and contact areas between ring blank and forming rolls, thus a chang...During cold ring rolling process, changing the sizes of forming rolls including driver roll and idle roll will lead to a change of amount of feed Ah and contact areas between ring blank and forming rolls, thus a change of the shape and dimension of deformation zone located in the gap of forming rolls is found. It has a significant effect on metal flow and the forming quality of deformed ring. So the size effect of forming rolls on cold ring rolling was investigated by three-dimensional dynamic explicit FEM under ABAQUS environment. The obtained results thoroughly reveal the influence laws of the sizes of forming rolls on the average spread, fishtail coefficient, degree of inhomogeneous deformation and force and power parameters etc not only provide an important basis for design of the forming rolls and optimization of cold ring rolling process, but also reveal the plastic deformation mechanism of cold ring rolling.展开更多
For hot rolling of titanium alloy large rings,evolution laws of stress and strain fields in rings with various sizes were explored and compared based on a reliable coupled thermo-mechanical three-dimensional (3D) fi...For hot rolling of titanium alloy large rings,evolution laws of stress and strain fields in rings with various sizes were explored and compared based on a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model.The results show that for forming processes of different rings,as γ^-(the equivalent distribution ratio of feed amount per revolution of a process) decreases,the final peak Mises stress may transfer from the biting point at the driver roll side to that at the idle roll side,and the final peak equivalent plastic strain may transfer from the outside surface to the inside surface;as L^- (the equivalent deformation zone length of a process) increases,the final peak Mises stress may appear in the middle layer.The final positions of peak Mises stress and equivalent plastic strain are the combined effects of the above two aspects.In the deformation zone of a deformed ring,the surface layers are in the 3D compressive stress state,while the middle layer is in the 1D compressive and 2D tensile stress state or 2D compressive and 1D tensile stress state;the whole ring is in the 1D compressive and 2D tensile strain state.展开更多
Finite element model is constructed according to the principle and characteristics of radial-axial large ring rolling technology. Dynamic explicit finite element method is used to simulate the rolling process. An effe...Finite element model is constructed according to the principle and characteristics of radial-axial large ring rolling technology. Dynamic explicit finite element method is used to simulate the rolling process. An effective modeling method of guide roller is proposed. Simulation indicates that high quality ring product could be obtained when rational rotational speed of rollers and feed rate in the radial and axial rolling are assigned.展开更多
A 3D rigid-plastic and coupled thermo-mechanical FE model for hot ring rolling(HRR) was developed based on DEFORM 3D software,then coupled heat transferring,material flow and temperature distribution of the ring in HR...A 3D rigid-plastic and coupled thermo-mechanical FE model for hot ring rolling(HRR) was developed based on DEFORM 3D software,then coupled heat transferring,material flow and temperature distribution of the ring in HRR were simulated and the effects of process parameters on them were analyzed.The results show that the deformation nonuniformity of ring blank increases with the increase of the rotational speed of driver roll and friction factor or the decrease of the feed rate of idle roll and initial temperature of ring blank.The temperature nonuniformity of ring blank decreases with the increase of the feed rate of idle roll or the decrease of initial temperature of ring blank and friction factor.There is an optimum rotational speed of driver roll under which the temperature distribution of ring blank is the most uniform.The results obtained can provide a guide for forming parameters optimization and quality control.展开更多
Due to the complexity of investigating deformation mechanisms in helical rolling(HR) process with traditional analytical method, it is significant to develop a 3D finite element(FE) model of HR process. The key formin...Due to the complexity of investigating deformation mechanisms in helical rolling(HR) process with traditional analytical method, it is significant to develop a 3D finite element(FE) model of HR process. The key forming conditions of cold HR of bearing steel-balls were detailedly described. Then, by taking steel-ball rolling elements of the B7008 C angular contact ball bearing as an example, a completed 3D elastic-plastic FE model of cold HR forming process was established under SIMUFACT software environment. Furthermore, the deformation characteristics in HR process were discovered, including the forming process, evolution and distribution laws of strain, stress and damage based on Lemaitre relative damage model. The results reveal that the central loosening and cavity defects in HR process may have a combined effect of large negative hydrostatic pressure(positive mean stress)caused by multi-dimensional tensile stresses, high level transverse tensile stress, and circular-alternating shear stress in cross section.展开更多
A dynamic mechanical model is proposed to describe the complexing actions of all the rolls on the ring during the ultra-large radial-axial ring rolling(RARR)process with four guide rolls.Based on the model,the calcula...A dynamic mechanical model is proposed to describe the complexing actions of all the rolls on the ring during the ultra-large radial-axial ring rolling(RARR)process with four guide rolls.Based on the model,the calculation models for bending moment and normal stress at any section of the ring are deduced by force method.If the maximum section bending normal stress exceeds the yield stress of the ring materials,the ring will be distorted thus leading to the instability of the RARR process.According to this,a plastic instability criterion for the ultra-large RARR process with four guide rolls is developed,based on which a mathematical model to calculate the critical guide force for avoiding plastic instability of ring is obtained.The influence rule of the position of guide roll on the dangerous ring section of plastic instability is revealed,from which it is found the dangerous ring section mainly appears at the radial and axial deformation regions and the contact positions of the guide rolls and ring.The optimized layout of guide roll around the ring in favor of stability is determined to be about a1=61°and a2=119°.The plastic instability criterion is proven to be reliable from the aspects of the critical guide force,the section bending moment and normal stress and the dangerous ring section of plastic instability.Intelligent simulation case studies for the RARR process of ultra-large aluminum alloy ring indicate that the stable forming of the process can be effectively realized by regulating the guide force based on the plastic instability criterion.This work could provide a valuable guidance for the control of guide rolls and the optimization of the ultra-large RARR process with four guide rolls.展开更多
Aiming at solving the difficulties of deforming manufacture of the automobile rear axle bevel gear blank,the paper presented to adopt the numerical simulation method to study the rolling process of the bevel gear blan...Aiming at solving the difficulties of deforming manufacture of the automobile rear axle bevel gear blank,the paper presented to adopt the numerical simulation method to study the rolling process of the bevel gear blank instead of the traditional expensive trail-and-error method. A three-dimensional simulation model of the Φ500 bevel gear blank radial ring rolling machine was firstly created based on the general dynamic explicit finite element code ANSYS/LS-DYNA,and then realized the virtual simulation of the entire rolling process of the bevel gear blank within a producing cycle. The simulation results displayed the real-time blank enlarging and fleck generating as well as the stress,strain and displacement contours,which are in good agreements with the real ring rolling process. It is concluded that this numerical simulation method is feasible and can be used to guide the practical rolling process of the bevel gear blank as well as other profile-shaped annular blanks.展开更多
基金Prqject(50335060) supported by the National Natural Science Foundation for Key Program of China Project (50225518) supported by the National Science Found of China for Distinguished Young Scholars
文摘During cold ring rolling process, changing the sizes of forming rolls including driver roll and idle roll will lead to a change of amount of feed Ah and contact areas between ring blank and forming rolls, thus a change of the shape and dimension of deformation zone located in the gap of forming rolls is found. It has a significant effect on metal flow and the forming quality of deformed ring. So the size effect of forming rolls on cold ring rolling was investigated by three-dimensional dynamic explicit FEM under ABAQUS environment. The obtained results thoroughly reveal the influence laws of the sizes of forming rolls on the average spread, fishtail coefficient, degree of inhomogeneous deformation and force and power parameters etc not only provide an important basis for design of the forming rolls and optimization of cold ring rolling process, but also reveal the plastic deformation mechanism of cold ring rolling.
基金Project(51005258) supported by the National Natural Science Foundation of China
文摘For hot rolling of titanium alloy large rings,evolution laws of stress and strain fields in rings with various sizes were explored and compared based on a reliable coupled thermo-mechanical three-dimensional (3D) finite element (FE) model.The results show that for forming processes of different rings,as γ^-(the equivalent distribution ratio of feed amount per revolution of a process) decreases,the final peak Mises stress may transfer from the biting point at the driver roll side to that at the idle roll side,and the final peak equivalent plastic strain may transfer from the outside surface to the inside surface;as L^- (the equivalent deformation zone length of a process) increases,the final peak Mises stress may appear in the middle layer.The final positions of peak Mises stress and equivalent plastic strain are the combined effects of the above two aspects.In the deformation zone of a deformed ring,the surface layers are in the 3D compressive stress state,while the middle layer is in the 1D compressive and 2D tensile stress state or 2D compressive and 1D tensile stress state;the whole ring is in the 1D compressive and 2D tensile strain state.
基金Supported by National Natural Science Foundation fro Key Program of China (50335060)
文摘Finite element model is constructed according to the principle and characteristics of radial-axial large ring rolling technology. Dynamic explicit finite element method is used to simulate the rolling process. An effective modeling method of guide roller is proposed. Simulation indicates that high quality ring product could be obtained when rational rotational speed of rollers and feed rate in the radial and axial rolling are assigned.
基金Project(2006AA04Z135) supported by the National Hi-tech Research and Development Program of ChinaProject(50735005) supported by the National Natural Science Foundation of ChinaProject supported by Northwestern Polytechnical University Foundation for Fundamental Research, China
文摘A 3D rigid-plastic and coupled thermo-mechanical FE model for hot ring rolling(HRR) was developed based on DEFORM 3D software,then coupled heat transferring,material flow and temperature distribution of the ring in HRR were simulated and the effects of process parameters on them were analyzed.The results show that the deformation nonuniformity of ring blank increases with the increase of the rotational speed of driver roll and friction factor or the decrease of the feed rate of idle roll and initial temperature of ring blank.The temperature nonuniformity of ring blank decreases with the increase of the feed rate of idle roll or the decrease of initial temperature of ring blank and friction factor.There is an optimum rotational speed of driver roll under which the temperature distribution of ring blank is the most uniform.The results obtained can provide a guide for forming parameters optimization and quality control.
基金Project(2011CB706605)supported by the National Basic Research Program of ChinaProject(IRT13087)supported by the Innovative Research Team Development Program of Ministry of Education of ChinaProject(2012-86)supported by the Grant from the High-end Talent Leading Program of Hubei Province,China
文摘Due to the complexity of investigating deformation mechanisms in helical rolling(HR) process with traditional analytical method, it is significant to develop a 3D finite element(FE) model of HR process. The key forming conditions of cold HR of bearing steel-balls were detailedly described. Then, by taking steel-ball rolling elements of the B7008 C angular contact ball bearing as an example, a completed 3D elastic-plastic FE model of cold HR forming process was established under SIMUFACT software environment. Furthermore, the deformation characteristics in HR process were discovered, including the forming process, evolution and distribution laws of strain, stress and damage based on Lemaitre relative damage model. The results reveal that the central loosening and cavity defects in HR process may have a combined effect of large negative hydrostatic pressure(positive mean stress)caused by multi-dimensional tensile stresses, high level transverse tensile stress, and circular-alternating shear stress in cross section.
基金supported by the National Natural Science Foundation of China (No. 51875468, 51575448)the Research & Development Institute of Northwestern Polytechnical University in Shenzhen (JCYJ20170815162709770)
文摘A dynamic mechanical model is proposed to describe the complexing actions of all the rolls on the ring during the ultra-large radial-axial ring rolling(RARR)process with four guide rolls.Based on the model,the calculation models for bending moment and normal stress at any section of the ring are deduced by force method.If the maximum section bending normal stress exceeds the yield stress of the ring materials,the ring will be distorted thus leading to the instability of the RARR process.According to this,a plastic instability criterion for the ultra-large RARR process with four guide rolls is developed,based on which a mathematical model to calculate the critical guide force for avoiding plastic instability of ring is obtained.The influence rule of the position of guide roll on the dangerous ring section of plastic instability is revealed,from which it is found the dangerous ring section mainly appears at the radial and axial deformation regions and the contact positions of the guide rolls and ring.The optimized layout of guide roll around the ring in favor of stability is determined to be about a1=61°and a2=119°.The plastic instability criterion is proven to be reliable from the aspects of the critical guide force,the section bending moment and normal stress and the dangerous ring section of plastic instability.Intelligent simulation case studies for the RARR process of ultra-large aluminum alloy ring indicate that the stable forming of the process can be effectively realized by regulating the guide force based on the plastic instability criterion.This work could provide a valuable guidance for the control of guide rolls and the optimization of the ultra-large RARR process with four guide rolls.
文摘Aiming at solving the difficulties of deforming manufacture of the automobile rear axle bevel gear blank,the paper presented to adopt the numerical simulation method to study the rolling process of the bevel gear blank instead of the traditional expensive trail-and-error method. A three-dimensional simulation model of the Φ500 bevel gear blank radial ring rolling machine was firstly created based on the general dynamic explicit finite element code ANSYS/LS-DYNA,and then realized the virtual simulation of the entire rolling process of the bevel gear blank within a producing cycle. The simulation results displayed the real-time blank enlarging and fleck generating as well as the stress,strain and displacement contours,which are in good agreements with the real ring rolling process. It is concluded that this numerical simulation method is feasible and can be used to guide the practical rolling process of the bevel gear blank as well as other profile-shaped annular blanks.