In Electromagnetic Welding (EMW) process, the capacitive energy is the source of input energy. The tool that is used for welding comprises of an electromagnetic coil. The job piece to be welded is placed in close prox...In Electromagnetic Welding (EMW) process, the capacitive energy is the source of input energy. The tool that is used for welding comprises of an electromagnetic coil. The job piece to be welded is placed in close proximity with the coil. The welding is achieved by impact, when the colliding job pieces are accelerated towards each other by the Lorentz force. The electromagnetic and mechanical properties/ parameters of the equipment, tool and the job govern the overall welding process. We have described a procedure to calculate the capacitive input energies for jobs of different sizes. Data is given for welding of strips of aluminium, copper and S.S. in similar and dissimilar combinations. Since the EMW technique is used in limited applications, this type of data is not available. We have validated our model with some data available in the literature. It is hoped that, this information will help the designer, to select and standardize the system and process parameters.展开更多
文摘In Electromagnetic Welding (EMW) process, the capacitive energy is the source of input energy. The tool that is used for welding comprises of an electromagnetic coil. The job piece to be welded is placed in close proximity with the coil. The welding is achieved by impact, when the colliding job pieces are accelerated towards each other by the Lorentz force. The electromagnetic and mechanical properties/ parameters of the equipment, tool and the job govern the overall welding process. We have described a procedure to calculate the capacitive input energies for jobs of different sizes. Data is given for welding of strips of aluminium, copper and S.S. in similar and dissimilar combinations. Since the EMW technique is used in limited applications, this type of data is not available. We have validated our model with some data available in the literature. It is hoped that, this information will help the designer, to select and standardize the system and process parameters.