作为一门新兴的学科领域,数据科学的科学性受到了关注且其科学问题未明确提出。文中从科学研究范式及方法论、可证伪性和可再现性、科学精神及快速迭代以及科学研究纲领及理论体系4个方面探讨了数据科学的“科学性”,并解答了为什么数...作为一门新兴的学科领域,数据科学的科学性受到了关注且其科学问题未明确提出。文中从科学研究范式及方法论、可证伪性和可再现性、科学精神及快速迭代以及科学研究纲领及理论体系4个方面探讨了数据科学的“科学性”,并解答了为什么数据科学是一门新兴科学的问题。在此基础上,结合DIKW模型(DIKW Pyramid or Hierarchy)、DMP(Data-Model-Problem)模型、数据科学的统计学和机器学习方法论以及数据科学的流程与活动,提出了数据科学的7个核心科学问题:解释在先还是在后或无、问题对齐数据还是数据对齐问题、更加相信数据还是模型、更加重视性能还是可解释性、如何划分数据、如何用已知数据解决未知数据的问题、人在环路还是人出环路。最后,提出了数据科学研究的4点建议:聚焦数据科学本身的理论研究,推动数据的科学、技术和工程需要进一步分离和专业化,加强人工智能赋能的数据科学的理论与实践以及数据科学学科(Data Science as A Discipline)与学科中的数据科学(Data Science Within A Discipline)的联动。展开更多
文摘作为一门新兴的学科领域,数据科学的科学性受到了关注且其科学问题未明确提出。文中从科学研究范式及方法论、可证伪性和可再现性、科学精神及快速迭代以及科学研究纲领及理论体系4个方面探讨了数据科学的“科学性”,并解答了为什么数据科学是一门新兴科学的问题。在此基础上,结合DIKW模型(DIKW Pyramid or Hierarchy)、DMP(Data-Model-Problem)模型、数据科学的统计学和机器学习方法论以及数据科学的流程与活动,提出了数据科学的7个核心科学问题:解释在先还是在后或无、问题对齐数据还是数据对齐问题、更加相信数据还是模型、更加重视性能还是可解释性、如何划分数据、如何用已知数据解决未知数据的问题、人在环路还是人出环路。最后,提出了数据科学研究的4点建议:聚焦数据科学本身的理论研究,推动数据的科学、技术和工程需要进一步分离和专业化,加强人工智能赋能的数据科学的理论与实践以及数据科学学科(Data Science as A Discipline)与学科中的数据科学(Data Science Within A Discipline)的联动。