Urban river riparian spaces and their natural systems are valuable to urban dwellers;but are increasingly affected and ruined by human activities and in particular, urbanization processes. In this research, land sat a...Urban river riparian spaces and their natural systems are valuable to urban dwellers;but are increasingly affected and ruined by human activities and in particular, urbanization processes. In this research, land sat and sentinel satellite imagery apt for change detection in vegetation cover, both landsat and sentinel imagery, covering the period between 1970 and 2021 in epochs of 1973, 1984, 1993, 2003, 2015 and 2021 years were used to establish the correlation between vegetation cover and built-up area along River Riara river reserve. The images were analysed to extract the built-up areas along the river reserve, including the buildings, and the rate of human settlements, which influenced vegetation cover. Normalized Difference Built-Up Index (NDBI) and Normalized Difference Vegetation Index (NDVI) were computed using the Short-Wave Infrared (SWIR) and the Near Infra-Red (NIR) bands to show the rate of change over the years. Results indicate NDVI values were high, compared to NDBI values along river Riara in the years 1973 and 1993 implying that there was more vegetation cover then. However, in the year 2021, the NDVI indicated the highest value at 0.88, with the complementary NDBI indicating the highest NDBI value at 0.47. This represents a significant increase in built-up areas since 2015 more than in previous epochs. Either, there was a significant increase in NDBI values, from 0.24 in 1993 to 0.47 in 2021. More so, the R-squared value at 0.80 informed 80% relationship between NDBI and NDVI values indicating a negative correlation.展开更多
The hydrogeology of first-order streams have been evaluated from 2007 to 2009 as part of the Whitetail Basin Watershed Restoration Project in Hay Creek Canyon located 25 km north of Whitehall Montana, USA. An in-depth...The hydrogeology of first-order streams have been evaluated from 2007 to 2009 as part of the Whitetail Basin Watershed Restoration Project in Hay Creek Canyon located 25 km north of Whitehall Montana, USA. An in-depth study of the riparian area hydrogeology started in the fall of 2007 with the installation of more than 40 hand-augered deeper (〉 1 m) wells to complement preexisting driven metal pipe piezometers (± 1 m) installed in four first-order drainages. Two zones within the shallow alluvial systems were identified. This paper presents the results of a concentrated study conducted in the Hay Creek drainage within the tWO zones. Data loggers placed in some of the wells led to a gradual understanding of the water-level patterns in different vegetative types (Douglas Fir, Aspen, Willow-Alder. and Grass-Sagebrush) over the various seasons. The deeper water-level responses change from seasonal patterns to strongly diurnal during summer months. Diurnal patterns continue until leaves drop from riparian vegetation. This was expected, however, the Douglas fir trees show the same pattern. Near the end of the study a full year of water-level data showing the seasonal behavior changes were collected. Resaturation of the upper zone occurs in the fall with sources of recharge coming from up-drainage. A detailed evaluation of water-level responses from up-drainage to down-drainage piezometers occurs in a "wave-like" resaturation phenomenon that allows one to estimate the bulk hydraulic conductivity of the "alluvial system" aquifer using principles of Darcy's Law. The methods used to evaluate the hydraulic properties and seasonal water-level patterns are presented.展开更多
The widespread distribution of river sand-harvesting activities continues to degrade river water quality and the surrounding riverine environments. This study determined practical effects of sand-harvesting on two riv...The widespread distribution of river sand-harvesting activities continues to degrade river water quality and the surrounding riverine environments. This study determined practical effects of sand-harvesting on two rivers in Kakamega County Kenya. Water samples were tested for turbidity and total suspended solids (TSS). For riparian soils, nitrogen (N), phosphorus (P), pH, organic carbon (OC), moisture content and textural class were determined on composite samples obtained from the field. Two control sites not affected by sand-harvesting were also used for comparison. Results indicate TSS concentrations increased during the rainy season when sand-harvesting was occurring, with significant differences between the control and sand-harvesting sample groups. Between seasons—dry and wet—in natural circumstances, the riparian soil moisture and phosphorus contents increased significantly. The study shows that river sand-harvesting degrades the aesthetic value of riparian areas, and makes rivers prone to bank erosion, and silt. This increases river water turbidity. The study concludes that sand-harvesting does not directly affect the riparian soil moisture content, total N, P, pH, OC or textural class, but reduces productivity of riparian land and puts the riverine ecosystems at risk.展开更多
Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank...Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank stability and mitigate soil erosion by the root system. In this study, the roots of four prevailing grass species, namely, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, in the riparian zone were investigated in relation to additional soil cohesion. Roots were sampled using a single root auger. Root length density(RLD) and root area ratio(RAR) were measured by using the Win RHIZO image analysis system. Root tensile strength(TR) was performed using a manualdynamometer, and the soil reinforcement caused by the roots was estimated using the simple Wu's perpendicular model. Results showed that RLD values of the studied species ranged from 0.24 cm/cm3 to20.89 cm/cm3 at different soil layers, and RLD were significantly greater at 0–10 cm depth in comparison to the deeper soil layers(>10 cm). RAR measurements revealed that on average 0.21% of the reference soil area was occupied by grass roots for all the investigated species. The measured root tensile strength was the highest for P. paspaloides(62.26MPa) followed by C. dactylon(51.49 MPa), H.compressa(50.66 MPa), and H. altissima(48.81MPa). Nevertheless, the estimated maximum root reinforcement in this investigation was 22.5 k Pa for H.altissima followed by H. compressa(21.1 k Pa), P.paspaloides(19.5 k Pa), and C. dactylon(15.4 k Pa) at0–5 cm depth soil layer. The root cohesion values estimated for all species were generally distributed at the 0–10 cm depth and decreased with the increment of soil depth. The higher root cohesion associated with H. altissima and H. compressa implies their suitability for revegetation purposes to strengthen the shallow soil in the riparian zone of the Three Gorges Reservoir. Although the soil reinforcement induced by roots is only assessed from indirect indicators, the present results still useful for species selection in the framework of implementing and future vegetation recovery actions in the riparian zone of the Three Gorges Reservoir and similar areas in the Yangtze River Basin.展开更多
Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only he...Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only help us to understand the ecological and hydrological process of the riparian forest but also provide support for ecological recovery of riparian forests and water-resources management of arid inland river basins. This study aims to estimate the suitability of the Water Vegetation Energy and Solute Modelling(WAVES) model to simulate the Ejina Desert riparian forest ecosystem changes,China, to assess effects of groundwater-depth change on the canopy leaf area index(LAI) and water budgets, and to ascertain the suitable groundwater depth for preserving the stability and structure of desert riparian forest. Results demonstrated that the WAVES model can simulate changes to ecological and hydrological processes. The annual mean water consumption of a Tamarix chinensis riparian forest was less than that of a Populus euphratica riparian forest, and the canopy LAI of the desert riparian forest should increase as groundwater depth decreases. Groundwater changes could significantly influence water budgets for T. chinensis and P. euphratica riparian forests and show the positive and negative effects on vegetation growth and water budgets of riparian forests. Maintaining the annual mean groundwater depth at around 1.7-2.7 m is critical for healthy riparian forest growth. This study highlights the importance of considering groundwater-change impacts on desert riparian vegetation and water-balance applications in ecological restoration and efficient water-resource management in the Heihe River Basin.展开更多
文摘Urban river riparian spaces and their natural systems are valuable to urban dwellers;but are increasingly affected and ruined by human activities and in particular, urbanization processes. In this research, land sat and sentinel satellite imagery apt for change detection in vegetation cover, both landsat and sentinel imagery, covering the period between 1970 and 2021 in epochs of 1973, 1984, 1993, 2003, 2015 and 2021 years were used to establish the correlation between vegetation cover and built-up area along River Riara river reserve. The images were analysed to extract the built-up areas along the river reserve, including the buildings, and the rate of human settlements, which influenced vegetation cover. Normalized Difference Built-Up Index (NDBI) and Normalized Difference Vegetation Index (NDVI) were computed using the Short-Wave Infrared (SWIR) and the Near Infra-Red (NIR) bands to show the rate of change over the years. Results indicate NDVI values were high, compared to NDBI values along river Riara in the years 1973 and 1993 implying that there was more vegetation cover then. However, in the year 2021, the NDVI indicated the highest value at 0.88, with the complementary NDBI indicating the highest NDBI value at 0.47. This represents a significant increase in built-up areas since 2015 more than in previous epochs. Either, there was a significant increase in NDBI values, from 0.24 in 1993 to 0.47 in 2021. More so, the R-squared value at 0.80 informed 80% relationship between NDBI and NDVI values indicating a negative correlation.
文摘The hydrogeology of first-order streams have been evaluated from 2007 to 2009 as part of the Whitetail Basin Watershed Restoration Project in Hay Creek Canyon located 25 km north of Whitehall Montana, USA. An in-depth study of the riparian area hydrogeology started in the fall of 2007 with the installation of more than 40 hand-augered deeper (〉 1 m) wells to complement preexisting driven metal pipe piezometers (± 1 m) installed in four first-order drainages. Two zones within the shallow alluvial systems were identified. This paper presents the results of a concentrated study conducted in the Hay Creek drainage within the tWO zones. Data loggers placed in some of the wells led to a gradual understanding of the water-level patterns in different vegetative types (Douglas Fir, Aspen, Willow-Alder. and Grass-Sagebrush) over the various seasons. The deeper water-level responses change from seasonal patterns to strongly diurnal during summer months. Diurnal patterns continue until leaves drop from riparian vegetation. This was expected, however, the Douglas fir trees show the same pattern. Near the end of the study a full year of water-level data showing the seasonal behavior changes were collected. Resaturation of the upper zone occurs in the fall with sources of recharge coming from up-drainage. A detailed evaluation of water-level responses from up-drainage to down-drainage piezometers occurs in a "wave-like" resaturation phenomenon that allows one to estimate the bulk hydraulic conductivity of the "alluvial system" aquifer using principles of Darcy's Law. The methods used to evaluate the hydraulic properties and seasonal water-level patterns are presented.
文摘The widespread distribution of river sand-harvesting activities continues to degrade river water quality and the surrounding riverine environments. This study determined practical effects of sand-harvesting on two rivers in Kakamega County Kenya. Water samples were tested for turbidity and total suspended solids (TSS). For riparian soils, nitrogen (N), phosphorus (P), pH, organic carbon (OC), moisture content and textural class were determined on composite samples obtained from the field. Two control sites not affected by sand-harvesting were also used for comparison. Results indicate TSS concentrations increased during the rainy season when sand-harvesting was occurring, with significant differences between the control and sand-harvesting sample groups. Between seasons—dry and wet—in natural circumstances, the riparian soil moisture and phosphorus contents increased significantly. The study shows that river sand-harvesting degrades the aesthetic value of riparian areas, and makes rivers prone to bank erosion, and silt. This increases river water turbidity. The study concludes that sand-harvesting does not directly affect the riparian soil moisture content, total N, P, pH, OC or textural class, but reduces productivity of riparian land and puts the riverine ecosystems at risk.
基金Financial support for this study was jointly provided by the National Natural Science Foundation of China (Grant No. 41201272)the Chinese Academy of Sciences Action-plan for West Development (Grant No. KZCX2-XB3-09)the Chinese Academy of Science (Light of West China Program)
文摘Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank stability and mitigate soil erosion by the root system. In this study, the roots of four prevailing grass species, namely, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, in the riparian zone were investigated in relation to additional soil cohesion. Roots were sampled using a single root auger. Root length density(RLD) and root area ratio(RAR) were measured by using the Win RHIZO image analysis system. Root tensile strength(TR) was performed using a manualdynamometer, and the soil reinforcement caused by the roots was estimated using the simple Wu's perpendicular model. Results showed that RLD values of the studied species ranged from 0.24 cm/cm3 to20.89 cm/cm3 at different soil layers, and RLD were significantly greater at 0–10 cm depth in comparison to the deeper soil layers(>10 cm). RAR measurements revealed that on average 0.21% of the reference soil area was occupied by grass roots for all the investigated species. The measured root tensile strength was the highest for P. paspaloides(62.26MPa) followed by C. dactylon(51.49 MPa), H.compressa(50.66 MPa), and H. altissima(48.81MPa). Nevertheless, the estimated maximum root reinforcement in this investigation was 22.5 k Pa for H.altissima followed by H. compressa(21.1 k Pa), P.paspaloides(19.5 k Pa), and C. dactylon(15.4 k Pa) at0–5 cm depth soil layer. The root cohesion values estimated for all species were generally distributed at the 0–10 cm depth and decreased with the increment of soil depth. The higher root cohesion associated with H. altissima and H. compressa implies their suitability for revegetation purposes to strengthen the shallow soil in the riparian zone of the Three Gorges Reservoir. Although the soil reinforcement induced by roots is only assessed from indirect indicators, the present results still useful for species selection in the framework of implementing and future vegetation recovery actions in the riparian zone of the Three Gorges Reservoir and similar areas in the Yangtze River Basin.
基金supported by the National Key Research and Development program (2016YFC0400908)the National Natural Science Foundation of China (Nos. 41101026, 31370466)the STS project of Chinese academy of sciences (29Y829731)
文摘Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only help us to understand the ecological and hydrological process of the riparian forest but also provide support for ecological recovery of riparian forests and water-resources management of arid inland river basins. This study aims to estimate the suitability of the Water Vegetation Energy and Solute Modelling(WAVES) model to simulate the Ejina Desert riparian forest ecosystem changes,China, to assess effects of groundwater-depth change on the canopy leaf area index(LAI) and water budgets, and to ascertain the suitable groundwater depth for preserving the stability and structure of desert riparian forest. Results demonstrated that the WAVES model can simulate changes to ecological and hydrological processes. The annual mean water consumption of a Tamarix chinensis riparian forest was less than that of a Populus euphratica riparian forest, and the canopy LAI of the desert riparian forest should increase as groundwater depth decreases. Groundwater changes could significantly influence water budgets for T. chinensis and P. euphratica riparian forests and show the positive and negative effects on vegetation growth and water budgets of riparian forests. Maintaining the annual mean groundwater depth at around 1.7-2.7 m is critical for healthy riparian forest growth. This study highlights the importance of considering groundwater-change impacts on desert riparian vegetation and water-balance applications in ecological restoration and efficient water-resource management in the Heihe River Basin.