Rapid population growth and artificial oasis enlargement did pose great threat to the natural riparian ecosystems of Tarim River and caused seriously ecological deterioration and greater desertification of the Tarim R...Rapid population growth and artificial oasis enlargement did pose great threat to the natural riparian ecosystems of Tarim River and caused seriously ecological deterioration and greater desertification of the Tarim River Basin in the second half of 20 century. Restoration of the endangered riparian ecosystem requires that environmental flow should be restored through restricted and uncontrolled flow diversion irrigation in tributary areas. Implementation of such restriction needs further the basin-wide reallocation of water resources through a set of engineering and non-engineering measures taken to ensure the water requirement in the tributary and maintain effective flows in Tarim River. As one of evolving HELP (Hydrology for Environment, Life and Policy) basins, the article first presents an overview of hydrology, socio-economic development and ecosystem evolution of the Tarim River Basin. Then, those measures for restoring and maintaining environmental flow are reviewed and analyzed along with its applicability and validity. The issues emerging in implementing those measures are also explored, and then the conclusions were summarized. Lessons learned could provide a good example for other basins under similar conditions.展开更多
<div style="text-align:justify;"> The vegetation affects the flow process and water environment, thus drawing increasing attention to river environment management. Previous research is mainly focused o...<div style="text-align:justify;"> The vegetation affects the flow process and water environment, thus drawing increasing attention to river environment management. Previous research is mainly focused on flow through vegetation in a channel with fully covered single-layer vegetation. However, in natural rivers, different heights’ vegetation often co-exists along one or two sides of a river. This paper experimentally studies how the flow velocity distribution is affected by the two different-layered vegetation allocated along two sides of an open-channel. The vegetation was simulated by dowels of two heights, 10 cm and 20 cm, and arranged in a parallel pattern along two sides of a flume under partially submerged conditions. The velocities along a cross-section were measured by Acoustic Doppler Velocimetry (ADV). The results of lateral velocity distribution show that a strong shear layer exists between vegetation and non-vegetation zones, indicating the retarding effect of vegetation. Meanwhile, as the flow depth increases, the relative velocity in the free flow zone decreases compared with that in the vegetated region, indicating that vegetation resistance to the flow decreases as increasing depth under the same vegetation configuration. These ?ndings would help understand the role of multi-layered vegetation in riparian management. </div>展开更多
In arid regions, large-scale water diversion from rivers leads to significant changes in river flow regimes, which may have large impacts on ecological water uses of river-dependent ecosystems, such as river, lake, we...In arid regions, large-scale water diversion from rivers leads to significant changes in river flow regimes, which may have large impacts on ecological water uses of river-dependent ecosystems, such as river, lake, wetland, and riparian ecosystems. To assess the integrated impact of water diversion on ecological water uses, we proposed a hierarchy evaluation model composed of four layers representing the evaluation goal, sub-areas of the influenced region, evaluation criteria, and water diversion schemes, respectively. The evaluation criteria for different types of ecological water uses were proposed, and the analytical hierarchy process was used for the integrated assessment. For a river ecosystem, the percentage of mean annual flow was used to define the grade of environmental flow. For a lake ecosystem, water recharge to the lake to compensate the lake water losses was used to assess the ecological water use of a lake. The flooding level of the wetland and the groundwater level in the riparian plain were used to assess the wetland and riparian ecological water uses, respectively. The proposed model was applied to a basin in northern Xinjiang in northwest China, where both water diversion and inter-basin water transfer projects were planned to be carried out. Based on assessment results for the whole study area and two sub-areas, an appropriate scheme was recommended from four planning schemes. With the recommended scheme, ecological water uses of the influenced ecosystems can be maintained at an acceptable level. Meanwhile, economical water requirements can be met to a great extent.展开更多
基金the support of the UNESCO HELP programthe support of K.C.Wong Education Foundation,Hong Kong
文摘Rapid population growth and artificial oasis enlargement did pose great threat to the natural riparian ecosystems of Tarim River and caused seriously ecological deterioration and greater desertification of the Tarim River Basin in the second half of 20 century. Restoration of the endangered riparian ecosystem requires that environmental flow should be restored through restricted and uncontrolled flow diversion irrigation in tributary areas. Implementation of such restriction needs further the basin-wide reallocation of water resources through a set of engineering and non-engineering measures taken to ensure the water requirement in the tributary and maintain effective flows in Tarim River. As one of evolving HELP (Hydrology for Environment, Life and Policy) basins, the article first presents an overview of hydrology, socio-economic development and ecosystem evolution of the Tarim River Basin. Then, those measures for restoring and maintaining environmental flow are reviewed and analyzed along with its applicability and validity. The issues emerging in implementing those measures are also explored, and then the conclusions were summarized. Lessons learned could provide a good example for other basins under similar conditions.
文摘<div style="text-align:justify;"> The vegetation affects the flow process and water environment, thus drawing increasing attention to river environment management. Previous research is mainly focused on flow through vegetation in a channel with fully covered single-layer vegetation. However, in natural rivers, different heights’ vegetation often co-exists along one or two sides of a river. This paper experimentally studies how the flow velocity distribution is affected by the two different-layered vegetation allocated along two sides of an open-channel. The vegetation was simulated by dowels of two heights, 10 cm and 20 cm, and arranged in a parallel pattern along two sides of a flume under partially submerged conditions. The velocities along a cross-section were measured by Acoustic Doppler Velocimetry (ADV). The results of lateral velocity distribution show that a strong shear layer exists between vegetation and non-vegetation zones, indicating the retarding effect of vegetation. Meanwhile, as the flow depth increases, the relative velocity in the free flow zone decreases compared with that in the vegetated region, indicating that vegetation resistance to the flow decreases as increasing depth under the same vegetation configuration. These ?ndings would help understand the role of multi-layered vegetation in riparian management. </div>
基金supported by the National Natural Science Foundation of China (Grant No. 50879041)
文摘In arid regions, large-scale water diversion from rivers leads to significant changes in river flow regimes, which may have large impacts on ecological water uses of river-dependent ecosystems, such as river, lake, wetland, and riparian ecosystems. To assess the integrated impact of water diversion on ecological water uses, we proposed a hierarchy evaluation model composed of four layers representing the evaluation goal, sub-areas of the influenced region, evaluation criteria, and water diversion schemes, respectively. The evaluation criteria for different types of ecological water uses were proposed, and the analytical hierarchy process was used for the integrated assessment. For a river ecosystem, the percentage of mean annual flow was used to define the grade of environmental flow. For a lake ecosystem, water recharge to the lake to compensate the lake water losses was used to assess the ecological water use of a lake. The flooding level of the wetland and the groundwater level in the riparian plain were used to assess the wetland and riparian ecological water uses, respectively. The proposed model was applied to a basin in northern Xinjiang in northwest China, where both water diversion and inter-basin water transfer projects were planned to be carried out. Based on assessment results for the whole study area and two sub-areas, an appropriate scheme was recommended from four planning schemes. With the recommended scheme, ecological water uses of the influenced ecosystems can be maintained at an acceptable level. Meanwhile, economical water requirements can be met to a great extent.