In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytical...In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.展开更多
In this paper, from the viewpoint of the time value of money, we study the risk measures for portfolio vectors with discount factor. Cash subadditive risk measures for portfolio vectors are proposed. Representation re...In this paper, from the viewpoint of the time value of money, we study the risk measures for portfolio vectors with discount factor. Cash subadditive risk measures for portfolio vectors are proposed. Representation results are given by two different methods which are convex analysis and enlarging space. Especially, the method of convex analysis make the line of reasoning and the representation result be simpler. Meanwhile, spot and forward risk measures for portfolio vectors are also introduced, and the relationships between them are investigated.展开更多
In this paper, by an axiomatic approach, we propose the concepts of comonotonic subadditivity and comonotonic convex risk measures for portfolios, which are extensions of the ones introduced by Song and Yan (2006). ...In this paper, by an axiomatic approach, we propose the concepts of comonotonic subadditivity and comonotonic convex risk measures for portfolios, which are extensions of the ones introduced by Song and Yan (2006). Representation results for these new introduced risk measures for portfolios are given in terms of Choquet integrals. Links of these newly introduced risk measures to multi-period comonotonic risk measures are represented. Finally, applications of the newly introduced comonotonic coherent risk measures to capital allocations are provided.展开更多
In this paper, new risk measures are introduced, tation results are also given. These newly introduced risk introduced by Song and Yan (2009) and Karoui (2009). and the corresponding represen- measures are extens...In this paper, new risk measures are introduced, tation results are also given. These newly introduced risk introduced by Song and Yan (2009) and Karoui (2009). and the corresponding represen- measures are extensions of those展开更多
In the context of risk measures,the capital allocation problem is widely studied in the literature where different approaches have been developed,also in connection with cooperative game theory and systemic risk.Altho...In the context of risk measures,the capital allocation problem is widely studied in the literature where different approaches have been developed,also in connection with cooperative game theory and systemic risk.Although static capital allocation rules have been extensively studied in the recent years,only few works deal with dynamic capital allocations and its relation with BSDEs.Moreover,all those works only examine the case of an underneath risk measure satisfying cash-additivity and,moreover,a large part of them focuses on the specific case of the gradient allocation where Gateaux differentiability is assumed.The main goal of this paper is,instead,to study general dynamic capital allocations associated to cash-subadditive risk measures,generalizing the approaches already existing in the literature and motivated by the presence of(ambiguity on)interest rates.Starting from an axiomatic approach,we then focus on the case where the underlying risk measures are induced by BSDEs whose drivers depend also on the yvariable.In this setting,we surprisingly find that the corresponding capital allocation rules solve special kinds of Backward Stochastic Volterra Integral Equations(BSVIEs).展开更多
We study mean-field BSDEs with jumps and a generalized mean-field operator that can capture higher-order interactions.We interpret the BSDE solution as a dynamic risk measure for a representative bank whose risk attit...We study mean-field BSDEs with jumps and a generalized mean-field operator that can capture higher-order interactions.We interpret the BSDE solution as a dynamic risk measure for a representative bank whose risk attitude is influenced by the system.This influence can come in a wide class of choices,including the average system state or average intensity of system interactions.Using Fenchel−Legendre transforms,our main result is a dual representation for the expectation of the risk measure in the convex case.In particular,we exhibit its dependence on the mean-field operator.展开更多
Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example t...Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example to analyze deep foundation pit excavation technology,including the nature of this construction project,the main technical measures in the construction of deep foundation pit,and the analysis of the safety risk prevention and control measures.The purpose of this analysis is to provide scientific reference for the construction quality and safety of deep foundation pits.展开更多
The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures.This paper includes eight sections.Section 1 is a longer introductio...The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures.This paper includes eight sections.Section 1 is a longer introduction,which gives a brief introduction to random metric theory,risk measures and conditional risk measures.Section 2 gives the central framework in random metric theory,topological structures,important examples,the notions of a random conjugate space and the Hahn-Banach theorems for random linear functionals.Section 3 gives several important representation theorems for random conjugate spaces.Section 4 gives characterizations for a complete random normed module to be random reflexive.Section 5 gives hyperplane separation theorems currently available in random locally convex modules.Section 6 gives the theory of random duality with respect to the locally L0-convex topology and in particular a characterization for a locally L0-convex module to be L0-pre-barreled.Section 7 gives some basic results on L0-convex analysis together with some applications to conditional risk measures.Finally,Section 8 is devoted to extensions of conditional convex risk measures,which shows that every representable L∞-type of conditional convex risk measure and every continuous Lp-type of convex conditional risk measure(1 ≤ p < +∞) can be extended to an L∞F(E)-type of σ,λ(L∞F(E),L1F(E))-lower semicontinuous conditional convex risk measure and an LpF(E)-type of T,λ-continuous conditional convex risk measure(1 ≤ p < +∞),respectively.展开更多
Reinsurance is an effective way for an insurance company to control its risk.How to design an optimal reinsurance contract is not only a key topic in actuarial science,but also an interesting research question in math...Reinsurance is an effective way for an insurance company to control its risk.How to design an optimal reinsurance contract is not only a key topic in actuarial science,but also an interesting research question in mathematics and statistics.Optimal reinsurance design problems can be proposed from different perspectives.Risk measures as tools of quantitative risk management have been extensively used in insurance and finance.Optimal reinsurance designs based on risk measures have been widely studied in the literature of insurance and become an active research topic.Different research approaches have been developed and many interesting results have been obtained in this area.These approaches and results have potential applications in future research.In this article,we review the recent advances in optimal reinsurance designs based on risk measures in static models and discuss some interesting problems on this topic for future research.展开更多
This paper proposes a new approach for stock efficiency evaluation based on multiple risk measures. A derived programming model with quadratic constraints is developed based on the envelopment form of data envelopment...This paper proposes a new approach for stock efficiency evaluation based on multiple risk measures. A derived programming model with quadratic constraints is developed based on the envelopment form of data envelopment analysis(DEA). The derived model serves as an input-oriented DEA model by minimizing inputs such as multiple risk measures. In addition, the Russell input measure is introduced and the corresponding efficiency results are evaluated. The findings show that stock efficiency evaluation under the new framework is also effective. The efficiency values indicate that the portfolio frontier under the new framework is more externally enveloped than the DEA efficient surface under the standard DEA framework.展开更多
This paper introduces and represents conditional coherent risk measures as essential suprema of conditional expectations over a convex set of probability measures and as distorted expectations given a concave distorti...This paper introduces and represents conditional coherent risk measures as essential suprema of conditional expectations over a convex set of probability measures and as distorted expectations given a concave distortion function.A model is then developed for the bid and ask prices of a European-type asset by a conic formulation.The price process is governed by a modified geometric Brownian motion whose drift and diffusion coefficients depend on a Markov chain.The bid and ask prices of a European-type asset are then characterized using conic quantization.展开更多
This paper presents explicit formulae giving tight upper and lower bounds on the expectations of alpha-unimodal random variables having a known range and given set of moments. Such bounds can be useful in ordering of ...This paper presents explicit formulae giving tight upper and lower bounds on the expectations of alpha-unimodal random variables having a known range and given set of moments. Such bounds can be useful in ordering of random variables in terms of risk and in PERT analysis where there is only incomplete stochastic information concerning the variables under investigation. Explicit closed form solutions are also given involving alpha-unimodal random variables having a known mean for two particularly important measures of risk—the squared distance or variance, and the absolute deviation. In addition, optimal tight bounds are given for the probability of ruin in the collective risk model when the severity distribution has an alpha-unimodal distribution with known moments.展开更多
Let(Ω , E, P) be a probability space, F a sub-σ-algebra of E, L^p(E)(1 p +∞) the classical function space and LF^p(E) the L^0(F)-module generated by L^p(E), which can be made into a random normed modul...Let(Ω , E, P) be a probability space, F a sub-σ-algebra of E, L^p(E)(1 p +∞) the classical function space and LF^p(E) the L^0(F)-module generated by L^p(E), which can be made into a random normed module in a natural way. Up to the present time, there are three kinds of conditional risk measures, whose model spaces are L^∞(E), L^p(E)(1 p +∞) and LF^p(E)(1 p +∞) respectively, and a conditional convex dual representation theorem has been established for each kind. The purpose of this paper is to study the relations among the three kinds of conditional risk measures together with their representation theorems. We first establish the relation between L^p(E) and LF^p(E), namely LF^p(E) = Hcc(L^p(E)), which shows that LF^p(E)is exactly the countable concatenation hull of L^p(E). Based on the precise relation, we then prove that every L^0(F)-convex L^p(E)-conditional risk measure(1 p +∞) can be uniquely extended to an L^0(F)-convex LF^p(E)-conditional risk measure and that the dual representation theorem of the former can also be regarded as a special case of that of the latter, which shows that the study of L^p-conditional risk measures can be incorporated into that of LF^p(E)-conditional risk measures. In particular, in the process we find that combining the countable concatenation hull of a set and the local property of conditional risk measures is a very useful analytic skill that may considerably simplify and improve the study of L^0-convex conditional risk measures.展开更多
This paper discusses optimal reinsurance strategy by minimizing insurer's risk under one general risk measure:Distortion risk measure.The authors assume that the reinsurance premium is determined by the expected v...This paper discusses optimal reinsurance strategy by minimizing insurer's risk under one general risk measure:Distortion risk measure.The authors assume that the reinsurance premium is determined by the expected value premium principle and the retained loss of the insurer is an increasing function of the initial loss.An explicit solution of the insurer's optimal reinsurance problem is obtained.The optimal strategies for some special distortion risk measures,such as value-at-risk(VaR) and tail value-at-risk(TVaR),are also investigated.展开更多
In this paper,we give an overview of representation theorems for various static risk measures:coherent or convex risk measures, risk measures with comonotonic subadditivity or convexity, law-invariant coherent or conv...In this paper,we give an overview of representation theorems for various static risk measures:coherent or convex risk measures, risk measures with comonotonic subadditivity or convexity, law-invariant coherent or convex risk measures, risk measures with comonotonic subadditivity or convexity and respecting stochastic orders.展开更多
In this work we give a comprehensive overview of the time consistency property of dynamic risk and performance measures,focusing on a the discrete time setup.The two key operational concepts used throughout are the no...In this work we give a comprehensive overview of the time consistency property of dynamic risk and performance measures,focusing on a the discrete time setup.The two key operational concepts used throughout are the notion of the LMmeasure and the notion of the update rule that,we believe,are the key tools for studying time consistency in a unified framework.展开更多
In this paper,we study several asymptotic behaviors of the estimators of convex and coherent entropic risk measures.First,the moderate deviation principles of the estimators are given.Second,the central limit theorems...In this paper,we study several asymptotic behaviors of the estimators of convex and coherent entropic risk measures.First,the moderate deviation principles of the estimators are given.Second,the central limit theorems of the estimators are given.Finally,several simulation results are given to support our main conclusions.展开更多
This study explored the effects of ambiguity on the calculation of Value-at-Risk(VaR)using a mathematical model based on the theory of Choquet-Brownian processes.It was found that while a moderate degree of ambiguity ...This study explored the effects of ambiguity on the calculation of Value-at-Risk(VaR)using a mathematical model based on the theory of Choquet-Brownian processes.It was found that while a moderate degree of ambiguity aversion yields a higher value for VaR and Expected Shortfall(ES),the result can be reversed in a deeply ambiguous environment.Additionally,some sufficient conditions are provided for the preservation of this effect under various forms of risk aggregation.This study offers a new perspective to full awareness on capital requirement calculation as requested by international regulation.展开更多
This study considers the risk management of insurance policies in line with the implementation of the new International Financial Reporting Standards 17.It applies the paid-incurred chain method to model the future un...This study considers the risk management of insurance policies in line with the implementation of the new International Financial Reporting Standards 17.It applies the paid-incurred chain method to model the future unpaid losses by combining the information channels of both the incurred claims and paid losses.We propose the recovery of the empirical distribution of the outstanding claims liabilities associated with a group of contracts via moment-based density approximation.We determine the risk measures and adjustments that are compliant with the new standard using the Monte–Carlo simulation method and approximated distributions.The historical data on the aggregate Ontario automobile insurance claims over a 15-year period are analyzed to examine the appropriateness and accuracy of our approach.展开更多
This study investigates calendar anomalies: day-of-the-week effect and seasonal effect in the Value-at-Risk (VaR) analysis of stock returns for AAPL during the period of 1995 through 2015. The statistical propertie...This study investigates calendar anomalies: day-of-the-week effect and seasonal effect in the Value-at-Risk (VaR) analysis of stock returns for AAPL during the period of 1995 through 2015. The statistical properties are examined and a comprehensive set of diagnostic checks are made on the two decades of AAPL daily stock returns. Combing the Extreme Value Approach together with a statistical analysis, it is learnt that the lowest VaR occurs on Fridays and Mondays typically. Moreover, high Q4 and Q3 VaR are observed during the test period. These results are valuable for anyone who needs evaluation and forecasts of the risk situation in AAPL. Moreover, this methodology, which is applicable to any other stocks or portfolios, is more realistic and comprehensive than the standard normal distribution based VaR model that is commonly used.展开更多
基金supported by the National Natural Science Foundation of China (11901184, 11771343)the Natural Science Foundation of Hunan Province (2020JJ5025)。
文摘In this paper, we focus on anticipated backward stochastic Volterra integral equations(ABSVIEs) with jumps. We solve the problem of the well-posedness of so-called M-solutions to this class of equation, and analytically derive a comparison theorem for them and for the continuous equilibrium consumption process. These continuous equilibrium consumption processes can be described by the solutions to this class of ABSVIE with jumps.Motivated by this, a class of dynamic risk measures induced by ABSVIEs with jumps are discussed.
基金Supported by the National Natural Science Foundation of China(11371284,11771343)
文摘In this paper, from the viewpoint of the time value of money, we study the risk measures for portfolio vectors with discount factor. Cash subadditive risk measures for portfolio vectors are proposed. Representation results are given by two different methods which are convex analysis and enlarging space. Especially, the method of convex analysis make the line of reasoning and the representation result be simpler. Meanwhile, spot and forward risk measures for portfolio vectors are also introduced, and the relationships between them are investigated.
基金Supported by the National Natural Science Foundation of China(11371284)the Natural Science Foundation of Henan Province(14B110037)
文摘In this paper, by an axiomatic approach, we propose the concepts of comonotonic subadditivity and comonotonic convex risk measures for portfolios, which are extensions of the ones introduced by Song and Yan (2006). Representation results for these new introduced risk measures for portfolios are given in terms of Choquet integrals. Links of these newly introduced risk measures to multi-period comonotonic risk measures are represented. Finally, applications of the newly introduced comonotonic coherent risk measures to capital allocations are provided.
基金Supported in part by the National Natural Science Foundation of China (10971157)Key Projects of Philosophy and Social Sciences Research+1 种基金Ministry of Education of China (09JZD0027)The Talent Introduction Projects of Nanjing Audit University
文摘In this paper, new risk measures are introduced, tation results are also given. These newly introduced risk introduced by Song and Yan (2009) and Karoui (2009). and the corresponding represen- measures are extensions of those
基金financial support of Gnampa Research Project 2024 (Grant No.PRR-20231026-073916-203)funded in part by an Ermenegildo Zegna Founder's Scholarship (Zullino)。
文摘In the context of risk measures,the capital allocation problem is widely studied in the literature where different approaches have been developed,also in connection with cooperative game theory and systemic risk.Although static capital allocation rules have been extensively studied in the recent years,only few works deal with dynamic capital allocations and its relation with BSDEs.Moreover,all those works only examine the case of an underneath risk measure satisfying cash-additivity and,moreover,a large part of them focuses on the specific case of the gradient allocation where Gateaux differentiability is assumed.The main goal of this paper is,instead,to study general dynamic capital allocations associated to cash-subadditive risk measures,generalizing the approaches already existing in the literature and motivated by the presence of(ambiguity on)interest rates.Starting from an axiomatic approach,we then focus on the case where the underlying risk measures are induced by BSDEs whose drivers depend also on the yvariable.In this setting,we surprisingly find that the corresponding capital allocation rules solve special kinds of Backward Stochastic Volterra Integral Equations(BSVIEs).
文摘We study mean-field BSDEs with jumps and a generalized mean-field operator that can capture higher-order interactions.We interpret the BSDE solution as a dynamic risk measure for a representative bank whose risk attitude is influenced by the system.This influence can come in a wide class of choices,including the average system state or average intensity of system interactions.Using Fenchel−Legendre transforms,our main result is a dual representation for the expectation of the risk measure in the convex case.In particular,we exhibit its dependence on the mean-field operator.
文摘Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example to analyze deep foundation pit excavation technology,including the nature of this construction project,the main technical measures in the construction of deep foundation pit,and the analysis of the safety risk prevention and control measures.The purpose of this analysis is to provide scientific reference for the construction quality and safety of deep foundation pits.
基金supported by National Natural Science Foundation of China (Grant No.10871016)
文摘The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures.This paper includes eight sections.Section 1 is a longer introduction,which gives a brief introduction to random metric theory,risk measures and conditional risk measures.Section 2 gives the central framework in random metric theory,topological structures,important examples,the notions of a random conjugate space and the Hahn-Banach theorems for random linear functionals.Section 3 gives several important representation theorems for random conjugate spaces.Section 4 gives characterizations for a complete random normed module to be random reflexive.Section 5 gives hyperplane separation theorems currently available in random locally convex modules.Section 6 gives the theory of random duality with respect to the locally L0-convex topology and in particular a characterization for a locally L0-convex module to be L0-pre-barreled.Section 7 gives some basic results on L0-convex analysis together with some applications to conditional risk measures.Finally,Section 8 is devoted to extensions of conditional convex risk measures,which shows that every representable L∞-type of conditional convex risk measure and every continuous Lp-type of convex conditional risk measure(1 ≤ p < +∞) can be extended to an L∞F(E)-type of σ,λ(L∞F(E),L1F(E))-lower semicontinuous conditional convex risk measure and an LpF(E)-type of T,λ-continuous conditional convex risk measure(1 ≤ p < +∞),respectively.
基金the support from the Natural Sciences and Engineering Research Council of Canada(NSERC)(grant No.RGPIN-2016-03975)supported by grants from the National Natural Science Foundation of China(Grant No.11971505)111 Project of China(No.B17050).
文摘Reinsurance is an effective way for an insurance company to control its risk.How to design an optimal reinsurance contract is not only a key topic in actuarial science,but also an interesting research question in mathematics and statistics.Optimal reinsurance design problems can be proposed from different perspectives.Risk measures as tools of quantitative risk management have been extensively used in insurance and finance.Optimal reinsurance designs based on risk measures have been widely studied in the literature of insurance and become an active research topic.Different research approaches have been developed and many interesting results have been obtained in this area.These approaches and results have potential applications in future research.In this article,we review the recent advances in optimal reinsurance designs based on risk measures in static models and discuss some interesting problems on this topic for future research.
基金supported by the National Natural Science Foundation of China under Grant Nos.72071192,71671172the Anhui Provincial Quality Engineering Teaching and Research Project Under Grant No.2020jyxm2279+2 种基金the Anhui University and Enterprise Cooperation Practice Education Base Project under Grant No.2019sjjd02Teaching and Research Project of USTC(2019xjyxm019,2020ycjg08)the Fundamental Research Funds for the Central Universities(WK2040000027)。
文摘This paper proposes a new approach for stock efficiency evaluation based on multiple risk measures. A derived programming model with quadratic constraints is developed based on the envelopment form of data envelopment analysis(DEA). The derived model serves as an input-oriented DEA model by minimizing inputs such as multiple risk measures. In addition, the Russell input measure is introduced and the corresponding efficiency results are evaluated. The findings show that stock efficiency evaluation under the new framework is also effective. The efficiency values indicate that the portfolio frontier under the new framework is more externally enveloped than the DEA efficient surface under the standard DEA framework.
文摘This paper introduces and represents conditional coherent risk measures as essential suprema of conditional expectations over a convex set of probability measures and as distorted expectations given a concave distortion function.A model is then developed for the bid and ask prices of a European-type asset by a conic formulation.The price process is governed by a modified geometric Brownian motion whose drift and diffusion coefficients depend on a Markov chain.The bid and ask prices of a European-type asset are then characterized using conic quantization.
文摘This paper presents explicit formulae giving tight upper and lower bounds on the expectations of alpha-unimodal random variables having a known range and given set of moments. Such bounds can be useful in ordering of random variables in terms of risk and in PERT analysis where there is only incomplete stochastic information concerning the variables under investigation. Explicit closed form solutions are also given involving alpha-unimodal random variables having a known mean for two particularly important measures of risk—the squared distance or variance, and the absolute deviation. In addition, optimal tight bounds are given for the probability of ruin in the collective risk model when the severity distribution has an alpha-unimodal distribution with known moments.
基金supported by National Natural Science Foundation of China(Grant Nos.11171015 and 11301568)
文摘Let(Ω , E, P) be a probability space, F a sub-σ-algebra of E, L^p(E)(1 p +∞) the classical function space and LF^p(E) the L^0(F)-module generated by L^p(E), which can be made into a random normed module in a natural way. Up to the present time, there are three kinds of conditional risk measures, whose model spaces are L^∞(E), L^p(E)(1 p +∞) and LF^p(E)(1 p +∞) respectively, and a conditional convex dual representation theorem has been established for each kind. The purpose of this paper is to study the relations among the three kinds of conditional risk measures together with their representation theorems. We first establish the relation between L^p(E) and LF^p(E), namely LF^p(E) = Hcc(L^p(E)), which shows that LF^p(E)is exactly the countable concatenation hull of L^p(E). Based on the precise relation, we then prove that every L^0(F)-convex L^p(E)-conditional risk measure(1 p +∞) can be uniquely extended to an L^0(F)-convex LF^p(E)-conditional risk measure and that the dual representation theorem of the former can also be regarded as a special case of that of the latter, which shows that the study of L^p-conditional risk measures can be incorporated into that of LF^p(E)-conditional risk measures. In particular, in the process we find that combining the countable concatenation hull of a set and the local property of conditional risk measures is a very useful analytic skill that may considerably simplify and improve the study of L^0-convex conditional risk measures.
基金Zheng's research was supported by the Program of National Natural Science Foundation of Youth of China under Grant No.11201012 and PHR201007125Yang's research was supported by the Key Program of National Natural Science Foundation of China under Grant No.11131002the National Natural Science Foundation of China under Grant No.11271033
文摘This paper discusses optimal reinsurance strategy by minimizing insurer's risk under one general risk measure:Distortion risk measure.The authors assume that the reinsurance premium is determined by the expected value premium principle and the retained loss of the insurer is an increasing function of the initial loss.An explicit solution of the insurer's optimal reinsurance problem is obtained.The optimal strategies for some special distortion risk measures,such as value-at-risk(VaR) and tail value-at-risk(TVaR),are also investigated.
基金supported by National Natural Science Foundation of China (Grant No.10571167)National Basic Research Program of China (973 Program) (Grant No.2007CB814902)Science Fund for Creative Research Groups (Grant No.10721101)
文摘In this paper,we give an overview of representation theorems for various static risk measures:coherent or convex risk measures, risk measures with comonotonic subadditivity or convexity, law-invariant coherent or convex risk measures, risk measures with comonotonic subadditivity or convexity and respecting stochastic orders.
基金Tomasz R.Bielecki and Igor Cialenco acknowledge support from the NSF grant DMS-1211256.Part of the research was performed while Igor Cialenco was visiting the Institute for Pure and Applied Mathematics(IPAM),which is supported by the National Science Foundation.Marcin Pitera acknowledges the support by Project operated within the Foundation for Polish Science IPP Programme“Geometry and Topology in Physical Model”co-financed by the EU European Regional Development Fund,Operational Program Innovative Economy 2007–2013.
文摘In this work we give a comprehensive overview of the time consistency property of dynamic risk and performance measures,focusing on a the discrete time setup.The two key operational concepts used throughout are the notion of the LMmeasure and the notion of the update rule that,we believe,are the key tools for studying time consistency in a unified framework.
基金supported by the National Natural Science Foundation of China(Nos.11701502,71971190).
文摘In this paper,we study several asymptotic behaviors of the estimators of convex and coherent entropic risk measures.First,the moderate deviation principles of the estimators are given.Second,the central limit theorems of the estimators are given.Finally,several simulation results are given to support our main conclusions.
文摘This study explored the effects of ambiguity on the calculation of Value-at-Risk(VaR)using a mathematical model based on the theory of Choquet-Brownian processes.It was found that while a moderate degree of ambiguity aversion yields a higher value for VaR and Expected Shortfall(ES),the result can be reversed in a deeply ambiguous environment.Additionally,some sufficient conditions are provided for the preservation of this effect under various forms of risk aggregation.This study offers a new perspective to full awareness on capital requirement calculation as requested by international regulation.
基金This study was funded by the MITACS Accelerate Grant-Award Number IT12339the Foreign Young Talents Program of the Ministry of Science and Technology of China(QN20200017001)the China Postdoctoral Science Foundation(2020M672913).
文摘This study considers the risk management of insurance policies in line with the implementation of the new International Financial Reporting Standards 17.It applies the paid-incurred chain method to model the future unpaid losses by combining the information channels of both the incurred claims and paid losses.We propose the recovery of the empirical distribution of the outstanding claims liabilities associated with a group of contracts via moment-based density approximation.We determine the risk measures and adjustments that are compliant with the new standard using the Monte–Carlo simulation method and approximated distributions.The historical data on the aggregate Ontario automobile insurance claims over a 15-year period are analyzed to examine the appropriateness and accuracy of our approach.
文摘This study investigates calendar anomalies: day-of-the-week effect and seasonal effect in the Value-at-Risk (VaR) analysis of stock returns for AAPL during the period of 1995 through 2015. The statistical properties are examined and a comprehensive set of diagnostic checks are made on the two decades of AAPL daily stock returns. Combing the Extreme Value Approach together with a statistical analysis, it is learnt that the lowest VaR occurs on Fridays and Mondays typically. Moreover, high Q4 and Q3 VaR are observed during the test period. These results are valuable for anyone who needs evaluation and forecasts of the risk situation in AAPL. Moreover, this methodology, which is applicable to any other stocks or portfolios, is more realistic and comprehensive than the standard normal distribution based VaR model that is commonly used.