板结构与其他构件的装配关系可用不同的边界条件进行模拟,然而针对不同边界条件的板结构进行动力学特性分析,目前缺乏统一的数学建模方法。以混合弹性边界条件下加筋、开孔的板类结构的横向振动为例,利用Rayleigh-Ritz法和模态叠加法求...板结构与其他构件的装配关系可用不同的边界条件进行模拟,然而针对不同边界条件的板结构进行动力学特性分析,目前缺乏统一的数学建模方法。以混合弹性边界条件下加筋、开孔的板类结构的横向振动为例,利用Rayleigh-Ritz法和模态叠加法求解矩形加筋多孔板在简谐激励下的动力学响应问题。采用将开孔板与加强筋沿交界面进行分离,结合改进的傅里叶级数设定开孔板的横向振动位移函数,利用不同刚度弹簧模拟混合弹性边界,推导加筋矩形开多孔板和边界弹簧系统的动能与势能,求解其在简谐激励下的动力学响应。经对比,理论计算结果与有限元(Finite Element Method,FEM)结果吻合良好。此外,用同样的方法分析不同孔尺寸对结构固有频率和响应的影响。研究发现,可通过改变加筋板的开孔形状、尺寸对结构的振动特性进行调整。研究成果可为混合弹性边界板结构动力分析提供一种新的技术途径,可以简化加筋开孔板结构动力分析的步骤。展开更多
提出一种用于求解任意边界条件下带有任意集中质量的连续多跨梁的自振特性的方法。求解过程为:运用改进的傅里叶级数法(Improved Fourier Series Method,IFSM)确定梁的位移形函数,通过Rayleigh-Ritz法得到梁的拉格朗日方程,然后利用Hami...提出一种用于求解任意边界条件下带有任意集中质量的连续多跨梁的自振特性的方法。求解过程为:运用改进的傅里叶级数法(Improved Fourier Series Method,IFSM)确定梁的位移形函数,通过Rayleigh-Ritz法得到梁的拉格朗日方程,然后利用Hamilton原理得到频率特征矩阵,通过求解广义特征值求得自振频率及位移振型。随后,对所提出的方法的收敛性和精度进行讨论,与现有文献中的方法对比,该方法具有计算精度较高、收敛性好、收敛速度快等特点。讨论不同边界条件下截断数、跨数以及频率阶数之间的关系。最后通过工程中的实际案例说明该方法的实用性,与现有文献对比可知,其精度可达99.9%以上,由此验证了该方法的可靠性以及适用性。该方法易于通过编程实现快速计算,可为工程运用提供便捷有效的理论支撑。展开更多
文摘板结构与其他构件的装配关系可用不同的边界条件进行模拟,然而针对不同边界条件的板结构进行动力学特性分析,目前缺乏统一的数学建模方法。以混合弹性边界条件下加筋、开孔的板类结构的横向振动为例,利用Rayleigh-Ritz法和模态叠加法求解矩形加筋多孔板在简谐激励下的动力学响应问题。采用将开孔板与加强筋沿交界面进行分离,结合改进的傅里叶级数设定开孔板的横向振动位移函数,利用不同刚度弹簧模拟混合弹性边界,推导加筋矩形开多孔板和边界弹簧系统的动能与势能,求解其在简谐激励下的动力学响应。经对比,理论计算结果与有限元(Finite Element Method,FEM)结果吻合良好。此外,用同样的方法分析不同孔尺寸对结构固有频率和响应的影响。研究发现,可通过改变加筋板的开孔形状、尺寸对结构的振动特性进行调整。研究成果可为混合弹性边界板结构动力分析提供一种新的技术途径,可以简化加筋开孔板结构动力分析的步骤。
文摘提出一种用于求解任意边界条件下带有任意集中质量的连续多跨梁的自振特性的方法。求解过程为:运用改进的傅里叶级数法(Improved Fourier Series Method,IFSM)确定梁的位移形函数,通过Rayleigh-Ritz法得到梁的拉格朗日方程,然后利用Hamilton原理得到频率特征矩阵,通过求解广义特征值求得自振频率及位移振型。随后,对所提出的方法的收敛性和精度进行讨论,与现有文献中的方法对比,该方法具有计算精度较高、收敛性好、收敛速度快等特点。讨论不同边界条件下截断数、跨数以及频率阶数之间的关系。最后通过工程中的实际案例说明该方法的实用性,与现有文献对比可知,其精度可达99.9%以上,由此验证了该方法的可靠性以及适用性。该方法易于通过编程实现快速计算,可为工程运用提供便捷有效的理论支撑。