The coordinated utilization of nitrogen(N)and phosphorus(P)is vital for plants to maintain nutrient balance and achieve optimal growth.Previously,we revealed a mechanism by which nitrate induces genes for phosphate ut...The coordinated utilization of nitrogen(N)and phosphorus(P)is vital for plants to maintain nutrient balance and achieve optimal growth.Previously,we revealed a mechanism by which nitrate induces genes for phosphate utilization;this mechanism depends on NRT1.1B-facilitated degradation of cytoplasmic SPX4,which in turn promotes cytoplasmic-nuclear shuttling of PHR2,the central transcription factor of phosphate signaling,and triggers the nitrate-induced phosphate response(NIPR)and N-P coordinated utilization in rice.In this study,we unveiled a fine-tuning mechanism of NIPR in the nucleus regulated by Highly Induced by Nitrate Gene 1(HINGE1,also known as RLI1),a MYB-transcription factor closely related to PHR2.RLI1/HINGE1,which is transcriptionally activated by PHR2 under nitrate induction,can directly activate the expression of phosphate starvation-induced genes.More importantly,RLI1/HINGE1 competes with PHR2 for binding to its repressor proteins in the nucleus(SPX proteins),and consequently releases PHR2 to further enhance phosphate response.Therefore,RLI1/HINGE1 amplifies the phosphate response in the nucleus downstream of the cytoplasmic SPX4-PHR2 cascade,thereby enabling fine-tuning of N-P balance when nitrate supply is sufficient.展开更多
基金This work was supported by the National Key Research and Development Program of China(2016YFD0101801,2009CB118506)the National Natural Sciences Foundation of China(31771348,32002119)China Postdoctoral Science Foundation(2020M672569).
文摘The coordinated utilization of nitrogen(N)and phosphorus(P)is vital for plants to maintain nutrient balance and achieve optimal growth.Previously,we revealed a mechanism by which nitrate induces genes for phosphate utilization;this mechanism depends on NRT1.1B-facilitated degradation of cytoplasmic SPX4,which in turn promotes cytoplasmic-nuclear shuttling of PHR2,the central transcription factor of phosphate signaling,and triggers the nitrate-induced phosphate response(NIPR)and N-P coordinated utilization in rice.In this study,we unveiled a fine-tuning mechanism of NIPR in the nucleus regulated by Highly Induced by Nitrate Gene 1(HINGE1,also known as RLI1),a MYB-transcription factor closely related to PHR2.RLI1/HINGE1,which is transcriptionally activated by PHR2 under nitrate induction,can directly activate the expression of phosphate starvation-induced genes.More importantly,RLI1/HINGE1 competes with PHR2 for binding to its repressor proteins in the nucleus(SPX proteins),and consequently releases PHR2 to further enhance phosphate response.Therefore,RLI1/HINGE1 amplifies the phosphate response in the nucleus downstream of the cytoplasmic SPX4-PHR2 cascade,thereby enabling fine-tuning of N-P balance when nitrate supply is sufficient.