Poor road conditions in underground mine tunnels can lead to decreased production efficiency and increased wear on production vehicles. A prototype system for road condition monitoring is presented in this paper to co...Poor road conditions in underground mine tunnels can lead to decreased production efficiency and increased wear on production vehicles. A prototype system for road condition monitoring is presented in this paper to counteract this. The system consists of three components i.e. localization, road monitoring, and scheduling. The localization of vehicles is performed using a Rao-Blackwellized extended particle filter, combining vehicle mounted sensors with signal strengths of Wi Fi access points. Two methods for road monitoring are described: a Kalman filter used together with a model of the vehicle suspension system, and a relative condition measure based on the power spectral density. Lastly, a method for taking automatic action on an ill-conditioned road segment is proposed in the form of a rescheduling algorithm.The scheduling algorithm is based on the large neighborhood search and is used to integrate road service activities in the short-term production schedule while minimizing introduced production disturbances.The system is demonstrated on experimental data collected in a Swedish underground mine.展开更多
The rising number of vehicles on roadways expedites the urge to increase efforts in implementing monitoring systems that look after road pavement conditions. This rising in number of vehicles on roadways also cause mo...The rising number of vehicles on roadways expedites the urge to increase efforts in implementing monitoring systems that look after road pavement conditions. This rising in number of vehicles on roadways also cause more damages and distresses on road pavement. Road pavement conditions should be accurately evaluated to identify the severity of pavement damages and types of pavement distress. Therefore, monitoring systems are considered a significant step of maintenance processes. Paved roads and unpaved roads require regular maintenance to provide for and preserve users' usability, accessibility, and safety. Transport agents and researches would spend a lot of time and money in inspecting some sections of the roadway surface;that inspection would then be followed by results recording and data analysis to diagnose the type of treatment required. These monitoring systems have been developed using various methods that include smart technologies and prepared equipment. Many related studies evaluate road pavement degradation and distress, while others focus on identifying the best maintenance monitoring approach in terms of time and cost. This paper set out to explore different monitoring techniques used to evaluate road pavement surface condition. Also, this study introduces dynamic and static monitoring systems used in both paved and unpaved roads to identify the severity of pavement degradations and types of pavement distress on road surfaces and also this study explains the used equipment in the previous monitoring studies.展开更多
The condition of the road infrastructure has severe impacts on the road safety, driving comfort, and on the rolling resistance. Therefore, the road infrastructure must be moni- tored comprehensively and in regular int...The condition of the road infrastructure has severe impacts on the road safety, driving comfort, and on the rolling resistance. Therefore, the road infrastructure must be moni- tored comprehensively and in regular intervals to identify damaged road segments and road hazards. Methods have been developed to comprehensively and automatically digitize the road infrastructure and estimate the road quality, which are based on vehicle sensors and a supervised machine learning classification. Since different types of vehicles have various suspension systems with different response functions, one classifier cannot be taken over to other vehicles. Usually, a high amount of time is needed to acquire training data for each individual vehicle and classifier. To address this problem, the methods to collect training data automatically for new vehicles based on the comparison of trajectories of untrained and trained vehicles have been developed. The results show that the method based on a k-dimensional tree and Euclidean distance performs best and is robust in transferring the information of the road surface from one vehicle to another. Furthermore, this method offers the possibility to merge the output and road infrastructure information from multiple vehicles to enable a more robust and precise prediction of the ground truth.展开更多
基金partially supported by the Wallenberg AIAutonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation
文摘Poor road conditions in underground mine tunnels can lead to decreased production efficiency and increased wear on production vehicles. A prototype system for road condition monitoring is presented in this paper to counteract this. The system consists of three components i.e. localization, road monitoring, and scheduling. The localization of vehicles is performed using a Rao-Blackwellized extended particle filter, combining vehicle mounted sensors with signal strengths of Wi Fi access points. Two methods for road monitoring are described: a Kalman filter used together with a model of the vehicle suspension system, and a relative condition measure based on the power spectral density. Lastly, a method for taking automatic action on an ill-conditioned road segment is proposed in the form of a rescheduling algorithm.The scheduling algorithm is based on the large neighborhood search and is used to integrate road service activities in the short-term production schedule while minimizing introduced production disturbances.The system is demonstrated on experimental data collected in a Swedish underground mine.
文摘The rising number of vehicles on roadways expedites the urge to increase efforts in implementing monitoring systems that look after road pavement conditions. This rising in number of vehicles on roadways also cause more damages and distresses on road pavement. Road pavement conditions should be accurately evaluated to identify the severity of pavement damages and types of pavement distress. Therefore, monitoring systems are considered a significant step of maintenance processes. Paved roads and unpaved roads require regular maintenance to provide for and preserve users' usability, accessibility, and safety. Transport agents and researches would spend a lot of time and money in inspecting some sections of the roadway surface;that inspection would then be followed by results recording and data analysis to diagnose the type of treatment required. These monitoring systems have been developed using various methods that include smart technologies and prepared equipment. Many related studies evaluate road pavement degradation and distress, while others focus on identifying the best maintenance monitoring approach in terms of time and cost. This paper set out to explore different monitoring techniques used to evaluate road pavement surface condition. Also, this study introduces dynamic and static monitoring systems used in both paved and unpaved roads to identify the severity of pavement degradations and types of pavement distress on road surfaces and also this study explains the used equipment in the previous monitoring studies.
基金project of Technical Aspects of Monitoring the Acoustic Quality of Infrastructure in Road Transport(3714541000)commissioned by the German Federal Environment Agencyfunded by the Federal Ministry for the Environment,Nature Conservation,Building and Nuclear Safety,Germany,within the Environmental Research Plan 2014.
文摘The condition of the road infrastructure has severe impacts on the road safety, driving comfort, and on the rolling resistance. Therefore, the road infrastructure must be moni- tored comprehensively and in regular intervals to identify damaged road segments and road hazards. Methods have been developed to comprehensively and automatically digitize the road infrastructure and estimate the road quality, which are based on vehicle sensors and a supervised machine learning classification. Since different types of vehicles have various suspension systems with different response functions, one classifier cannot be taken over to other vehicles. Usually, a high amount of time is needed to acquire training data for each individual vehicle and classifier. To address this problem, the methods to collect training data automatically for new vehicles based on the comparison of trajectories of untrained and trained vehicles have been developed. The results show that the method based on a k-dimensional tree and Euclidean distance performs best and is robust in transferring the information of the road surface from one vehicle to another. Furthermore, this method offers the possibility to merge the output and road infrastructure information from multiple vehicles to enable a more robust and precise prediction of the ground truth.