In order to reduce the traffic pressure of urban arterial road with the rational utilization of the branch road,the vehicle meeting behavior on the branch road without divided lane was described,and the cellular autom...In order to reduce the traffic pressure of urban arterial road with the rational utilization of the branch road,the vehicle meeting behavior on the branch road without divided lane was described,and the cellular automation (CA) model was put forward by introducing meeting behavior to reflect the relation between safe meeting speed and road width.The numerical simulation results depict several relation curves between road section capacity,speed and road width under different directional distributions of traffic flow,as well as the curves between the major and minor direction saturation flow,speed and road width.These relation characteristics indicate that except the one-way road section capacity and speed remaining unchanged,other road section capacities and speeds under different directional distributions increase with the increase of road width.On narrow road,the two-way traffic capacity and speed are less than those of one-way traffic;on wide road,the two-way traffic capacity doubles that of one-way traffic,but their speeds are almost the same.As the directional distribution moves to an even distribution of 50/50,the major direction saturation flows and speeds as well as the minor direction speeds tend to decease,while the minor direction saturation flow tends to increase.展开更多
Many studies have examined the effect of roads on landscape fragmentation.Yet they rarely considered local characteristics of the road and road buffer widths.Therefore,this study that took place in the Qingzang Highwa...Many studies have examined the effect of roads on landscape fragmentation.Yet they rarely considered local characteristics of the road and road buffer widths.Therefore,this study that took place in the Qingzang Highway(QH)examined the variations in road buffers and road sections of landscape fragmentation.The QH was divided into 32 sections with 23 buffer areas.Based on the indicators of landscape fragmentation from 1980 to 2018,we found significant spatial heterogeneity between sections and buffers.Generally,landscape fragmentation de-creased with increasing buffer distance to the QH.For different sections,the coefficients of variation between buffers were rather high and significantly different.Therefore,fixed-width buffers may overestimate or underes-timate the spatial scope and influence intensity of a road.The impacts of road sections around provincial capitals,prefecture-level cities and main counties on landscape fragmentation were relatively extensive and formed clus-ters of highly fragmented areas.Geodetector results indicated that natural and anthropogenic factors,such as altitude,climate,distance to major settlements and socioeconomic conditions,could well explain the spatiotem-poral characteristics of landscape fragmentation.Altitude,precipitation and the distance to major settlements had higher explanatory power for landscape fragmentation in permafrost regions,whereas slope and socioeconomic condition had higher explanatory power for non-permafrost regions in Xizang Autonomous Region.展开更多
As the lifeline of social development,road and bridge projects are the main channel to realize resource transportation and economic circulation.Ensuring the quality of road and bridge project construction is crucial f...As the lifeline of social development,road and bridge projects are the main channel to realize resource transportation and economic circulation.Ensuring the quality of road and bridge project construction is crucial for the development of society,the economy,and people’s livelihoods.This paper studies the design of roadbed pavement structures in road and bridge transition sections.It aims to provide technical references and significance for China’s road and bridge engineering design and construction units,promoting scientific and standardized design in these actions.This will contribute to the safety and stable operation of road and bridge projects,offering effective technical support.Furthermore,it seeks to foster the sustainable and healthy development of China’s road and bridge engineering on a macro level.展开更多
基金Project(71171200) supported by the National Natural Science Foundation of China
文摘In order to reduce the traffic pressure of urban arterial road with the rational utilization of the branch road,the vehicle meeting behavior on the branch road without divided lane was described,and the cellular automation (CA) model was put forward by introducing meeting behavior to reflect the relation between safe meeting speed and road width.The numerical simulation results depict several relation curves between road section capacity,speed and road width under different directional distributions of traffic flow,as well as the curves between the major and minor direction saturation flow,speed and road width.These relation characteristics indicate that except the one-way road section capacity and speed remaining unchanged,other road section capacities and speeds under different directional distributions increase with the increase of road width.On narrow road,the two-way traffic capacity and speed are less than those of one-way traffic;on wide road,the two-way traffic capacity doubles that of one-way traffic,but their speeds are almost the same.As the directional distribution moves to an even distribution of 50/50,the major direction saturation flows and speeds as well as the minor direction speeds tend to decease,while the minor direction saturation flow tends to increase.
基金supported by The Second Tibetan Plateau Scientific Expedition and Research Program"Regional functional types and regionalization of ecological security"(Grant No.2019QZKK0406).
文摘Many studies have examined the effect of roads on landscape fragmentation.Yet they rarely considered local characteristics of the road and road buffer widths.Therefore,this study that took place in the Qingzang Highway(QH)examined the variations in road buffers and road sections of landscape fragmentation.The QH was divided into 32 sections with 23 buffer areas.Based on the indicators of landscape fragmentation from 1980 to 2018,we found significant spatial heterogeneity between sections and buffers.Generally,landscape fragmentation de-creased with increasing buffer distance to the QH.For different sections,the coefficients of variation between buffers were rather high and significantly different.Therefore,fixed-width buffers may overestimate or underes-timate the spatial scope and influence intensity of a road.The impacts of road sections around provincial capitals,prefecture-level cities and main counties on landscape fragmentation were relatively extensive and formed clus-ters of highly fragmented areas.Geodetector results indicated that natural and anthropogenic factors,such as altitude,climate,distance to major settlements and socioeconomic conditions,could well explain the spatiotem-poral characteristics of landscape fragmentation.Altitude,precipitation and the distance to major settlements had higher explanatory power for landscape fragmentation in permafrost regions,whereas slope and socioeconomic condition had higher explanatory power for non-permafrost regions in Xizang Autonomous Region.
文摘As the lifeline of social development,road and bridge projects are the main channel to realize resource transportation and economic circulation.Ensuring the quality of road and bridge project construction is crucial for the development of society,the economy,and people’s livelihoods.This paper studies the design of roadbed pavement structures in road and bridge transition sections.It aims to provide technical references and significance for China’s road and bridge engineering design and construction units,promoting scientific and standardized design in these actions.This will contribute to the safety and stable operation of road and bridge projects,offering effective technical support.Furthermore,it seeks to foster the sustainable and healthy development of China’s road and bridge engineering on a macro level.