A diesel engine for tractor was tested for 250 hours of durability with biodiesel fuel of 100%. An engine test cycle was designed based on the ISO test code of off-road vehicle. Eight test conditions, combination of t...A diesel engine for tractor was tested for 250 hours of durability with biodiesel fuel of 100%. An engine test cycle was designed based on the ISO test code of off-road vehicle. Eight test conditions, combination of three engine speeds and eight engine loads, were applied to the engine endurance test, and the engine was operated for eight hours in a day. Power output, fuel consumption rate, exhaust gas quality and particulate matter (PM) were measured and discussed. For the extensive 250 hours of the tractor diesel engine endurance test no significant changes of power output, fuel consumption rate, exhaust gas quality and PM were monitored and authors could not find any difference in the engine patterns of the two fuels of BDF100 and light oil. During all the engine endurance test conditions, no abrupt stopping was encountered but because of temperature down by the cold season the endurance test could not carried out for some periods. PMs were collected and the average F'M was 0.027 g/kw which was far below than Tier 4 diesel engine PM of 0.3 g/kw h defined by US EPA PM of the diesel engine clas,;. Overall even 100% biodiesel can be an alternative fuel for light oil for diesel engine operation with some considerations for cold sea:son use.展开更多
Current portable power generators are mainly based on internal combustion engine since they present higher values of efficiency comparing to other engines;the main reason why internal combustion engine is not convenie...Current portable power generators are mainly based on internal combustion engine since they present higher values of efficiency comparing to other engines;the main reason why internal combustion engine is not convenient for micro power generation (5 - 30 kW) is because of their heaviness. Micro and ultra micro gas turbine devices, based on a micro compressor and a micro turbine installed on the same shaft, are more suitable for this scope for several reasons. Micro turbine systems have many advantages over reciprocating engine generators, such as higher power density (with respect to size and weight), extremely low emissions and few, or just one, moving part. Those designed with foil bearings and air-cooling operate without oil, coolants or other hazardous materials. Micro turbines also have the advantage of having the majority of their waste heat contained in their relatively high temperature exhaust. Micro turbines offer several potential advantages compared to other technologies for small-scale power generation, including: a small number of moving parts, compact size, lightweight, greater efficiency, lower emissions, lower electricity costs, and opportunities to utilize waste fuels. The object of this study is the experimental tests on a stand-alone gas turbine device with a pre-heated combustion chamber (CC), to validate the fuel consumption reduction, compared to an actual and commercial device, used on air models.展开更多
Biodiesel has generated increased interest recently as an alternative to petroleum-derived diesel. Due to its high oxygen content, biodiesel typically burns more completely than petroleum diesel, and thus has lower em...Biodiesel has generated increased interest recently as an alternative to petroleum-derived diesel. Due to its high oxygen content, biodiesel typically burns more completely than petroleum diesel, and thus has lower emissions of hydrocarbons (HC), carbon monoxide (CO), and particulate matter (PM). However, biodiesel may increase or decrease nitrogen oxide (NOx) and carbon dioxide (CO2) emissions, depending on biodiesel feedstock, engine type, and test cycle. The purpose of this study was to compare emissions from 20% blends of biodiesel made from 4 feedstocks (soybean oil, canola oil, waste cooking oil, and animal fat) with emissions from ultra low sulfur diesel (ULSD). Emissions of NOx and CO2 were made under real-world driving conditions using a Horiba On-Board Measurement System OBS-1300 on a highway route and arterial route;emissions of NOx, CO2, HC, CO, and PM were measured in a controlled setting using a chassis dynamometer with Urban Dynamometer Drive Schedule. Dynamometer test results showed statistically significant lower emissions of HC, CO, and PM from all B20 blends compared to ULSD. For CO2, both on-road testing (arterial, highway, and idling) and dynamometer testing showed no statistically significant difference in emissions among the B20 blends and ULSD. For NOx, dynamometer testing showed only B20 from soybean oil to have statistically significant higher emissions. This is generally consistent with the on-road testing, which showed no statistically significant difference in NOx emissions between ULSD and the B20 blends.展开更多
This paper aimed to investigate the correlation between carbon emissions,fuel consumption,and speed limit.A theoretical model was derived based on the energy conservation law,which expresses the relationship between v...This paper aimed to investigate the correlation between carbon emissions,fuel consumption,and speed limit.A theoretical model was derived based on the energy conservation law,which expresses the relationship between vehicle's fuel consumption and speed.Subsequently,a total of 40 sets of fuel consumption data were collected through field tests to verify the accuracy of the theoretical model at different speeds and different road longitudinal slope combinations.The fuel consumption was then converted to carbon emissions according to the carbon emission factors specified by Intergovernmental Panel on Climate Change(IPCC).In the field experiment,two types of cars and trucks,which are most common on the expressways in China,were selected.Finally,the travel speed under different posted speed limits was obtained through the previously established model,and the carbon emission changes of different vehicle types at different limited speeds are calculated.The results show that the speed limit has a significant impact on fuel consumption and carbon emissions.When the speed limit increased from 80 to 120 km/h,average vehicle speeds increased about 21%-27%,and fuel consumption and carbon emissions increased from approximately 33%-38%.Another interesting result was that the vehicle's fuel consumption and carbon emissions are only affected by speed.The results of the study explore the effect of speed limits on carbon emissions and provide evidence for road managers to set reasonable speed limits.展开更多
文摘A diesel engine for tractor was tested for 250 hours of durability with biodiesel fuel of 100%. An engine test cycle was designed based on the ISO test code of off-road vehicle. Eight test conditions, combination of three engine speeds and eight engine loads, were applied to the engine endurance test, and the engine was operated for eight hours in a day. Power output, fuel consumption rate, exhaust gas quality and particulate matter (PM) were measured and discussed. For the extensive 250 hours of the tractor diesel engine endurance test no significant changes of power output, fuel consumption rate, exhaust gas quality and PM were monitored and authors could not find any difference in the engine patterns of the two fuels of BDF100 and light oil. During all the engine endurance test conditions, no abrupt stopping was encountered but because of temperature down by the cold season the endurance test could not carried out for some periods. PMs were collected and the average F'M was 0.027 g/kw which was far below than Tier 4 diesel engine PM of 0.3 g/kw h defined by US EPA PM of the diesel engine clas,;. Overall even 100% biodiesel can be an alternative fuel for light oil for diesel engine operation with some considerations for cold sea:son use.
文摘Current portable power generators are mainly based on internal combustion engine since they present higher values of efficiency comparing to other engines;the main reason why internal combustion engine is not convenient for micro power generation (5 - 30 kW) is because of their heaviness. Micro and ultra micro gas turbine devices, based on a micro compressor and a micro turbine installed on the same shaft, are more suitable for this scope for several reasons. Micro turbine systems have many advantages over reciprocating engine generators, such as higher power density (with respect to size and weight), extremely low emissions and few, or just one, moving part. Those designed with foil bearings and air-cooling operate without oil, coolants or other hazardous materials. Micro turbines also have the advantage of having the majority of their waste heat contained in their relatively high temperature exhaust. Micro turbines offer several potential advantages compared to other technologies for small-scale power generation, including: a small number of moving parts, compact size, lightweight, greater efficiency, lower emissions, lower electricity costs, and opportunities to utilize waste fuels. The object of this study is the experimental tests on a stand-alone gas turbine device with a pre-heated combustion chamber (CC), to validate the fuel consumption reduction, compared to an actual and commercial device, used on air models.
文摘Biodiesel has generated increased interest recently as an alternative to petroleum-derived diesel. Due to its high oxygen content, biodiesel typically burns more completely than petroleum diesel, and thus has lower emissions of hydrocarbons (HC), carbon monoxide (CO), and particulate matter (PM). However, biodiesel may increase or decrease nitrogen oxide (NOx) and carbon dioxide (CO2) emissions, depending on biodiesel feedstock, engine type, and test cycle. The purpose of this study was to compare emissions from 20% blends of biodiesel made from 4 feedstocks (soybean oil, canola oil, waste cooking oil, and animal fat) with emissions from ultra low sulfur diesel (ULSD). Emissions of NOx and CO2 were made under real-world driving conditions using a Horiba On-Board Measurement System OBS-1300 on a highway route and arterial route;emissions of NOx, CO2, HC, CO, and PM were measured in a controlled setting using a chassis dynamometer with Urban Dynamometer Drive Schedule. Dynamometer test results showed statistically significant lower emissions of HC, CO, and PM from all B20 blends compared to ULSD. For CO2, both on-road testing (arterial, highway, and idling) and dynamometer testing showed no statistically significant difference in emissions among the B20 blends and ULSD. For NOx, dynamometer testing showed only B20 from soybean oil to have statistically significant higher emissions. This is generally consistent with the on-road testing, which showed no statistically significant difference in NOx emissions between ULSD and the B20 blends.
基金supported by the Fundamental Research Funds for the Central Universities,CHD(grant no.300102212107)Scientific Research Project of Zhejiang Provincial Department of Transportation,funding number 2020025。
文摘This paper aimed to investigate the correlation between carbon emissions,fuel consumption,and speed limit.A theoretical model was derived based on the energy conservation law,which expresses the relationship between vehicle's fuel consumption and speed.Subsequently,a total of 40 sets of fuel consumption data were collected through field tests to verify the accuracy of the theoretical model at different speeds and different road longitudinal slope combinations.The fuel consumption was then converted to carbon emissions according to the carbon emission factors specified by Intergovernmental Panel on Climate Change(IPCC).In the field experiment,two types of cars and trucks,which are most common on the expressways in China,were selected.Finally,the travel speed under different posted speed limits was obtained through the previously established model,and the carbon emission changes of different vehicle types at different limited speeds are calculated.The results show that the speed limit has a significant impact on fuel consumption and carbon emissions.When the speed limit increased from 80 to 120 km/h,average vehicle speeds increased about 21%-27%,and fuel consumption and carbon emissions increased from approximately 33%-38%.Another interesting result was that the vehicle's fuel consumption and carbon emissions are only affected by speed.The results of the study explore the effect of speed limits on carbon emissions and provide evidence for road managers to set reasonable speed limits.