The kinetics of leaching arsenic from Ni-Mo ore roasting dust was investigated. The effects including leaching temperature, particle size of the smelter dust, stirring speed, the coefficient β(the molar ratio of sod...The kinetics of leaching arsenic from Ni-Mo ore roasting dust was investigated. The effects including leaching temperature, particle size of the smelter dust, stirring speed, the coefficient β(the molar ratio of sodium chlorate to arsenic in the smelter dust) and the initial H+ concentration on leaching arsenic were studied. The results indicate that the leaching of arsenic increases sharply with the decrease of particle size. The orders of reaction with respect to H+ concentration and particle size are determinted to be 1.136 and 1.806, respectively. The leaching of arsenic reaches 99% under experimental conditions, the apparent activation energy is determined to be 11.157 kJ/mol, which is consistent with the values of activation energy for diffusion model The kinetics equation of leaching arsenic from the roasting dust could be expressed by a semi-empirical equation as 1-2/3η (1 -η)^2/3 = k0(c[H+])^1.136ro^-1.806 exp[(-11157 /RT)t].展开更多
Iron was recovered from blast furnace dust and high-phosphorus oolitic hematite in the presence of Na2CO3 and CaCO3 additives. The functions of Na2CO3 and CaCO3 during the coreduction roasting process were investigate...Iron was recovered from blast furnace dust and high-phosphorus oolitic hematite in the presence of Na2CO3 and CaCO3 additives. The functions of Na2CO3 and CaCO3 during the coreduction roasting process were investigated by XRD and SEM-EDS analyses. Results indicate that these additives not only hinder the reduction of fluorapatite, CaCO3 also decreases the P content of direct reduced iron(DRI) by increasing the reduction alkalinity. P remains as fluorapatite in the slag, which can be removed by grinding and magnetic separation under optimal conditions. The Na2CO3 promotes hematite reduction and improves the iron recovery(εFe) by replacing the FeO from fayalite, which results in quick growth and aggregation of metallic iron and improvement of ε(Fe) in DRI. A DRI with 91.88 mass% Fe, and 0.065 mass% P can be achieved at a recovery of 87.86 mass% under the optimal condition.展开更多
基金Project(DY125-11-T-02)supported by the International Waters Resources Investigation and Development of"12.5",ChinaProject(A2012-102)supported by the Foundation of Changsha Institute of Mining and Metallurgy,China
文摘The kinetics of leaching arsenic from Ni-Mo ore roasting dust was investigated. The effects including leaching temperature, particle size of the smelter dust, stirring speed, the coefficient β(the molar ratio of sodium chlorate to arsenic in the smelter dust) and the initial H+ concentration on leaching arsenic were studied. The results indicate that the leaching of arsenic increases sharply with the decrease of particle size. The orders of reaction with respect to H+ concentration and particle size are determinted to be 1.136 and 1.806, respectively. The leaching of arsenic reaches 99% under experimental conditions, the apparent activation energy is determined to be 11.157 kJ/mol, which is consistent with the values of activation energy for diffusion model The kinetics equation of leaching arsenic from the roasting dust could be expressed by a semi-empirical equation as 1-2/3η (1 -η)^2/3 = k0(c[H+])^1.136ro^-1.806 exp[(-11157 /RT)t].
基金Funded by National Natural Science Foundation of China(No.51134002)
文摘Iron was recovered from blast furnace dust and high-phosphorus oolitic hematite in the presence of Na2CO3 and CaCO3 additives. The functions of Na2CO3 and CaCO3 during the coreduction roasting process were investigated by XRD and SEM-EDS analyses. Results indicate that these additives not only hinder the reduction of fluorapatite, CaCO3 also decreases the P content of direct reduced iron(DRI) by increasing the reduction alkalinity. P remains as fluorapatite in the slag, which can be removed by grinding and magnetic separation under optimal conditions. The Na2CO3 promotes hematite reduction and improves the iron recovery(εFe) by replacing the FeO from fayalite, which results in quick growth and aggregation of metallic iron and improvement of ε(Fe) in DRI. A DRI with 91.88 mass% Fe, and 0.065 mass% P can be achieved at a recovery of 87.86 mass% under the optimal condition.