We present iterative numerical methods for solving the inverse problem of recovering the nonnegative Robin coefficient from partial boundary measurement of the solution to the Laplace equation. Based on the boundary i...We present iterative numerical methods for solving the inverse problem of recovering the nonnegative Robin coefficient from partial boundary measurement of the solution to the Laplace equation. Based on the boundary integral equation formulation of the problem, nonnegativity constraints in the form of a penalty term are incorporated conveniently into least-squares iteration schemes for solving the inverse problem. Numerical implementation and examples are presented to illustrate the effectiveness of this strategy in improving recovery results.展开更多
A localized version of the method of fundamental solution(LMFS)is devised in this paper for the numerical solutions of three-dimensional(3D)elasticity problems.The present method combines the advantages of high comput...A localized version of the method of fundamental solution(LMFS)is devised in this paper for the numerical solutions of three-dimensional(3D)elasticity problems.The present method combines the advantages of high computational efficiency of localized discretization schemes and the pseudo-spectral convergence rate of the classical MFS formulation.Such a combination will be an important improvement to the classical MFS for complicated and large-scale engineering simulations.Numerical examples with up to 100,000 unknowns can be solved without any difficulty on a personal computer using the developed methodologies.The advantages,disadvantages and potential applications of the proposed method,as compared with the classical MFS and boundary element method(BEM),are discussed.展开更多
The elastic plate vibration model is studied under the external force. The size of the source term by the given mode of the source and some observations from the body of the plate is determined over a time interval, w...The elastic plate vibration model is studied under the external force. The size of the source term by the given mode of the source and some observations from the body of the plate is determined over a time interval, which is referred to be an inverse source problem of a plate equation. The uniqueness theorem for this problem is stated, and the fundamental solution to the plate equation is derived. In the case that the plate is driven by the harmonic load, the fundamental solution method (FSM) and the Tikhonov regularization technique axe used to calculate the source term. Numerical experiments of the Euler-Bernoulli beam and the Kirchhoff-Love plate show that the FSM can work well for practical use, no matter the source term is smooth or piecewise.展开更多
In this paper,we investigate the method of fundamental solutions(MFS)for solving exterior Helmholtz problems with high wave-number in axisymmetric domains.Since the coefficientmatrix in the linear system resulting fro...In this paper,we investigate the method of fundamental solutions(MFS)for solving exterior Helmholtz problems with high wave-number in axisymmetric domains.Since the coefficientmatrix in the linear system resulting fromtheMFS approximation has a block circulant structure,it can be solved by the matrix decomposition algorithm and fast Fourier transform for the fast computation of large-scale problems and meanwhile saving computer memory space.Several numerical examples are provided to demonstrate its applicability and efficacy in two and three dimensional domains.展开更多
The localized method of fundamental solutions(LMFS)is a relatively new meshless boundary collocation method.In the LMFS,the global MFS approxima-tion which is expensive to evaluate is replaced by local MFS formulation...The localized method of fundamental solutions(LMFS)is a relatively new meshless boundary collocation method.In the LMFS,the global MFS approxima-tion which is expensive to evaluate is replaced by local MFS formulation defined in a set of overlapping subdomains.The LMFS algorithm therefore converts differential equations into sparse rather than dense matrices which are much cheaper to calcu-late.This paper makes thefirst attempt to apply the LMFS,in conjunction with a domain-decomposition technique,for the numerical solution of steady-state heat con-duction problems in two-dimensional(2D)anisotropic layered materials.Here,the layered material is decomposed into several subdomains along the layer-layer inter-faces,and in each of the subdomains,the solution is approximated by using the LMFS expansion.On the subdomain interface,compatibility of temperatures and heatfluxes are imposed.Preliminary numerical experiments illustrate that the proposed domain-decomposition LMFS algorithm is accurate,stable and computationally efficient for the numerical solution of large-scale multi-layered materials.展开更多
One of the main difficulties in the application of the method of fundamental solutions(MFS)is the determination of the position of the pseudo-boundary on which are placed the singularities in terms of which the approx...One of the main difficulties in the application of the method of fundamental solutions(MFS)is the determination of the position of the pseudo-boundary on which are placed the singularities in terms of which the approximation is expressed.In this work,we propose a simple practical algorithm for determining an estimate of the pseudo-boundary which yields the most accurate MFS approximation when the method is applied to certain boundary value problems.Several numerical examples are provided.展开更多
In this work,the localized method of fundamental solution(LMFS)is extended to Signorini problem.Unlike the traditional fundamental solution(MFS),the LMFS approximates the field quantity at each node by using the field...In this work,the localized method of fundamental solution(LMFS)is extended to Signorini problem.Unlike the traditional fundamental solution(MFS),the LMFS approximates the field quantity at each node by using the field quantities at the adjacent nodes.The idea of the LMFS is similar to the localized domain type method.The fictitious boundary nodes are proposed to impose the boundary condition and governing equations at each node to formulate a sparse matrix.The inequality boundary condition of Signorini problem is solved indirectly by introducing nonlinear complementarity problem function(NCP-function).Numerical examples are carried out to validate the reliability and effectiveness of the LMFS in solving Signorini problems.展开更多
Fundamental solution of Dirichlet boundary value problem of axisymmetric Helmholtz equation is constructed via modi?ed Bessel function of the second kind, which uni?ed the formulas of fundamental solution of Helmholtz...Fundamental solution of Dirichlet boundary value problem of axisymmetric Helmholtz equation is constructed via modi?ed Bessel function of the second kind, which uni?ed the formulas of fundamental solution of Helmholtz equation, elliptic type Euler-Poisson-Darboux equation and Laplace equation in any dimensional space.展开更多
The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi...The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi_harmonic operator and Laplace operator, applying the multiple reciprocity method(MRM), the MRM boundary integral equation for plate bending problem was constructed. It proves that the boundary integral equation derived from MRM is essentially identical to the conventional boundary integral equation. Hence the convergence analysis of MRM for plate bending problem can be obtained by the error estimation for the conventional boundary integral equation. In addition, this method can extend to the case of more series of the high_order fundamental solution sequences.展开更多
In the paper an inverse boundary value problem for a fourth order elliptic equation with an integral condition of the first kind is investigated. First, the given problem is reduced to an equivalent problem in a certa...In the paper an inverse boundary value problem for a fourth order elliptic equation with an integral condition of the first kind is investigated. First, the given problem is reduced to an equivalent problem in a certain sense. Then, using the Fourier method the equivalent problem is reduced to solving the system of integral equations. The existence and uniqueness of a solution to the system of integral equation is proved by the contraction mapping principle. This solution is also the unique solution to the equivalent problem. Finally, by equivalence, the theorem of existence and uniqueness of a classical solution to the given problem is proved.展开更多
We extend the oblique projection method given by Y.Saad to solve the generalized least squares problem. The corresponding oblique projection operator is presented and the convergence theorems are proved. Some necessar...We extend the oblique projection method given by Y.Saad to solve the generalized least squares problem. The corresponding oblique projection operator is presented and the convergence theorems are proved. Some necessary and sufficient conditions for computing the solution or the minimum N-norm solution of the min || A x- b ||M2 have been proposed as well.展开更多
We propose a new numerical method for estimating the piecewise constant Robin coefficient in two-dimensional elliptic equation from boundary measurements. The Robin in- verse problem is recast into a minimization of a...We propose a new numerical method for estimating the piecewise constant Robin coefficient in two-dimensional elliptic equation from boundary measurements. The Robin in- verse problem is recast into a minimization of an output least-square formulation. A technique based on determining the discontinuous points of the unknown coefficient is suggested, and we investigate the differentiability of the solution and the objective functional with respect to the discontinuous points. Then we apply the Gauss-Newton method for reconstructing the shape of the unknown Robin coefficient. Numerical examples illustrate its efficiency and stability.展开更多
A brief review of the works of the author and his co-authors on the application of nonlinear analysis, numerical and analytical methods for solving the nonlinear inverse problems (synthesis problems) for optimizing th...A brief review of the works of the author and his co-authors on the application of nonlinear analysis, numerical and analytical methods for solving the nonlinear inverse problems (synthesis problems) for optimizing the different types of radiating systems, is presented in the paper. The synthesis problems are formulated in variational statements and further they are reduced to research and numerical solution of nonlinear integral equations of Hammerstein type. The existence theorems are proof, the investigation methods of nonuniqueness problem of solutions and numerical algorithms of finding the optimal solutions are proved.展开更多
A fundamental solution was obtained for an infinite plane bonded by two dissimilar isotropic semi-planes by employing plane elastic complex variable method and theory of boundary value problems for analytic functions....A fundamental solution was obtained for an infinite plane bonded by two dissimilar isotropic semi-planes by employing plane elastic complex variable method and theory of boundary value problems for analytic functions.Fundamental solution was prepared for solving these types of problems with boundary element method.展开更多
Both the orthotropy and the stress concentration are common issues in modem structural engineering. This paper introduces the boundary element method (BEM) into the elastic and elastoplastic analyses for 2D orthotro...Both the orthotropy and the stress concentration are common issues in modem structural engineering. This paper introduces the boundary element method (BEM) into the elastic and elastoplastic analyses for 2D orthotropic media with stress concentration. The discretized boundary element formulations are established, and the stress formulae as well as the fundamental solutions are derived in matrix notations. The numerical procedures are proposed to analyze both elastic and elastoplastic problems of 2D orthotropic me- dia with stress concentration. To obtain more precise stress values with fewer elements, the quadratic isoparametric element formulation is adopted in the boundary discretization and numerical procedures. Numerical examples show that there are significant stress concentrations and different elastoplastic behaviors in some orthotropic media, and some of the computational results are compared with other solutions. Good agreements are also observed, which demonstrates the efficiency and reliability of the present BEM in the stress concentration analysis for orthotropic media.展开更多
文摘We present iterative numerical methods for solving the inverse problem of recovering the nonnegative Robin coefficient from partial boundary measurement of the solution to the Laplace equation. Based on the boundary integral equation formulation of the problem, nonnegativity constraints in the form of a penalty term are incorporated conveniently into least-squares iteration schemes for solving the inverse problem. Numerical implementation and examples are presented to illustrate the effectiveness of this strategy in improving recovery results.
基金supported by the National Natural Science Foundation of China(Nos.11872220,11772119)the Natural Science Foundation of Shandong Province of China(Nos.ZR2017JL004,2019KJI009)。
文摘A localized version of the method of fundamental solution(LMFS)is devised in this paper for the numerical solutions of three-dimensional(3D)elasticity problems.The present method combines the advantages of high computational efficiency of localized discretization schemes and the pseudo-spectral convergence rate of the classical MFS formulation.Such a combination will be an important improvement to the classical MFS for complicated and large-scale engineering simulations.Numerical examples with up to 100,000 unknowns can be solved without any difficulty on a personal computer using the developed methodologies.The advantages,disadvantages and potential applications of the proposed method,as compared with the classical MFS and boundary element method(BEM),are discussed.
文摘The elastic plate vibration model is studied under the external force. The size of the source term by the given mode of the source and some observations from the body of the plate is determined over a time interval, which is referred to be an inverse source problem of a plate equation. The uniqueness theorem for this problem is stated, and the fundamental solution to the plate equation is derived. In the case that the plate is driven by the harmonic load, the fundamental solution method (FSM) and the Tikhonov regularization technique axe used to calculate the source term. Numerical experiments of the Euler-Bernoulli beam and the Kirchhoff-Love plate show that the FSM can work well for practical use, no matter the source term is smooth or piecewise.
基金The work described in this paper was supported by National Basic Research Program of China(973 Project No.2010CB832702)the R&D Special Fund for Public Welfare Industry(Hydrodynamics,Project No.201101014 and the 111 project under grant B12032)National Science Funds for Distinguished Young Scholars(Grant No.11125208).The third author acknowledges the support of Distinguished Overseas Visiting Scholar Fellowship provided by the Ministry of Education of China.
文摘In this paper,we investigate the method of fundamental solutions(MFS)for solving exterior Helmholtz problems with high wave-number in axisymmetric domains.Since the coefficientmatrix in the linear system resulting fromtheMFS approximation has a block circulant structure,it can be solved by the matrix decomposition algorithm and fast Fourier transform for the fast computation of large-scale problems and meanwhile saving computer memory space.Several numerical examples are provided to demonstrate its applicability and efficacy in two and three dimensional domains.
基金The work described in this paper was supported by the National Natural Science Foundation of China(Nos.11872220,11772119)the Natural Science Foundation of Shandong Province of China(Nos.2019KJI009,ZR2017JL004)+1 种基金the Six Talent Peaks Project in Jiangsu Province of China(Grant No.2019-KTHY-009)the Key Laboratory of Road Construction Technology and Equipment(Chang’an University,Grant No.300102251505).
文摘The localized method of fundamental solutions(LMFS)is a relatively new meshless boundary collocation method.In the LMFS,the global MFS approxima-tion which is expensive to evaluate is replaced by local MFS formulation defined in a set of overlapping subdomains.The LMFS algorithm therefore converts differential equations into sparse rather than dense matrices which are much cheaper to calcu-late.This paper makes thefirst attempt to apply the LMFS,in conjunction with a domain-decomposition technique,for the numerical solution of steady-state heat con-duction problems in two-dimensional(2D)anisotropic layered materials.Here,the layered material is decomposed into several subdomains along the layer-layer inter-faces,and in each of the subdomains,the solution is approximated by using the LMFS expansion.On the subdomain interface,compatibility of temperatures and heatfluxes are imposed.Preliminary numerical experiments illustrate that the proposed domain-decomposition LMFS algorithm is accurate,stable and computationally efficient for the numerical solution of large-scale multi-layered materials.
文摘One of the main difficulties in the application of the method of fundamental solutions(MFS)is the determination of the position of the pseudo-boundary on which are placed the singularities in terms of which the approximation is expressed.In this work,we propose a simple practical algorithm for determining an estimate of the pseudo-boundary which yields the most accurate MFS approximation when the method is applied to certain boundary value problems.Several numerical examples are provided.
基金supported by the National Science Foundation of China(No.52109089)support of Post Doctor Program(2019M652281)Nature Science Foundation of Jiangxi Province(20192BAB216040).
文摘In this work,the localized method of fundamental solution(LMFS)is extended to Signorini problem.Unlike the traditional fundamental solution(MFS),the LMFS approximates the field quantity at each node by using the field quantities at the adjacent nodes.The idea of the LMFS is similar to the localized domain type method.The fictitious boundary nodes are proposed to impose the boundary condition and governing equations at each node to formulate a sparse matrix.The inequality boundary condition of Signorini problem is solved indirectly by introducing nonlinear complementarity problem function(NCP-function).Numerical examples are carried out to validate the reliability and effectiveness of the LMFS in solving Signorini problems.
基金The NSF(11326152) of Chinathe NSF(BK20130736) of Jiangsu Province of Chinathe NSF(CKJB201709) of Nanjing Institute of Technology
文摘Fundamental solution of Dirichlet boundary value problem of axisymmetric Helmholtz equation is constructed via modi?ed Bessel function of the second kind, which uni?ed the formulas of fundamental solution of Helmholtz equation, elliptic type Euler-Poisson-Darboux equation and Laplace equation in any dimensional space.
文摘The boundary value problem of plate bending problem on two_parameter foundation was discussed.Using two series of the high_order fundamental solution sequences, namely, the fundamental solution sequences for the multi_harmonic operator and Laplace operator, applying the multiple reciprocity method(MRM), the MRM boundary integral equation for plate bending problem was constructed. It proves that the boundary integral equation derived from MRM is essentially identical to the conventional boundary integral equation. Hence the convergence analysis of MRM for plate bending problem can be obtained by the error estimation for the conventional boundary integral equation. In addition, this method can extend to the case of more series of the high_order fundamental solution sequences.
文摘In the paper an inverse boundary value problem for a fourth order elliptic equation with an integral condition of the first kind is investigated. First, the given problem is reduced to an equivalent problem in a certain sense. Then, using the Fourier method the equivalent problem is reduced to solving the system of integral equations. The existence and uniqueness of a solution to the system of integral equation is proved by the contraction mapping principle. This solution is also the unique solution to the equivalent problem. Finally, by equivalence, the theorem of existence and uniqueness of a classical solution to the given problem is proved.
基金Supported by the National Natural Science Foundation of China
文摘We extend the oblique projection method given by Y.Saad to solve the generalized least squares problem. The corresponding oblique projection operator is presented and the convergence theorems are proved. Some necessary and sufficient conditions for computing the solution or the minimum N-norm solution of the min || A x- b ||M2 have been proposed as well.
基金Supported by the Key Project of the Major Research Plan of the NSFC(91130004)
文摘We propose a new numerical method for estimating the piecewise constant Robin coefficient in two-dimensional elliptic equation from boundary measurements. The Robin in- verse problem is recast into a minimization of an output least-square formulation. A technique based on determining the discontinuous points of the unknown coefficient is suggested, and we investigate the differentiability of the solution and the objective functional with respect to the discontinuous points. Then we apply the Gauss-Newton method for reconstructing the shape of the unknown Robin coefficient. Numerical examples illustrate its efficiency and stability.
文摘A brief review of the works of the author and his co-authors on the application of nonlinear analysis, numerical and analytical methods for solving the nonlinear inverse problems (synthesis problems) for optimizing the different types of radiating systems, is presented in the paper. The synthesis problems are formulated in variational statements and further they are reduced to research and numerical solution of nonlinear integral equations of Hammerstein type. The existence theorems are proof, the investigation methods of nonuniqueness problem of solutions and numerical algorithms of finding the optimal solutions are proved.
文摘A fundamental solution was obtained for an infinite plane bonded by two dissimilar isotropic semi-planes by employing plane elastic complex variable method and theory of boundary value problems for analytic functions.Fundamental solution was prepared for solving these types of problems with boundary element method.
基金The project supported by the Basic Research Foundation of Tsinghua University,the National Foundation for Excellent Doctoral Thesis(200025)the National Natural Science Foundation of China(19902007).
文摘Both the orthotropy and the stress concentration are common issues in modem structural engineering. This paper introduces the boundary element method (BEM) into the elastic and elastoplastic analyses for 2D orthotropic media with stress concentration. The discretized boundary element formulations are established, and the stress formulae as well as the fundamental solutions are derived in matrix notations. The numerical procedures are proposed to analyze both elastic and elastoplastic problems of 2D orthotropic me- dia with stress concentration. To obtain more precise stress values with fewer elements, the quadratic isoparametric element formulation is adopted in the boundary discretization and numerical procedures. Numerical examples show that there are significant stress concentrations and different elastoplastic behaviors in some orthotropic media, and some of the computational results are compared with other solutions. Good agreements are also observed, which demonstrates the efficiency and reliability of the present BEM in the stress concentration analysis for orthotropic media.