Leaf trait patterns and their variations with climate are interpreted as an adaptive adjustment to environment.This study assessed the adaptability of planted black locust (Robinia pseudoacacia L.) based on the analys...Leaf trait patterns and their variations with climate are interpreted as an adaptive adjustment to environment.This study assessed the adaptability of planted black locust (Robinia pseudoacacia L.) based on the analysis of leaf traits and the comparison of its leaf traits with inter-specific ones existing in the same area.We measured some water and N use related leaf traits: leaf dry mass per unit area (LMA) and N,P and K concentrations based on both leaf area (Narea,Parea and Karea) and leaf mass (Nmass,Pmass and Kmass) of R.pseudoacacia at 31 sites along a water stress gradient in North Shaanxi Province,China.The results show that leaves of R.pseudoacacia have high Nmass and low LMA in the study area.High Nmass and low LMA are usually representative of luxurious resource use,and will advance plant resource competitiveness in high-resource conditions.As a whole,LMA-nutrient relationships of R.pseudoacacia display patterns that are fairly similar to the inter-specific relationships in both direction and intensity.The tendency for LMA and Narea to increase with decreasing water availability and the positive correlation between LMA and Narea reflect the trend for R.pseudoacacia to enhance water use efficiency (WUE) at the expense of down-regulated photosynthetic N use efficiency (PNUE) and high construction cost in dry conditions.However,the positive relationship between LMA and Narea in high mean annual precipitation (MAP) area is either unremarkable or reversed with decreasing water availability.This implies a lower photosynthetic capacity and a higher construction cost for high-LMA leaves.The inter-specific relationship between LMA and Narea is positive and does not change with water availability.This difference between inter-species and intra-species may be due to more diversified anatomies and more specialised structures for inter-species than intra-species.The failure of R.pseudoacacia adaption to dry conditions reflected by LMA-Narea relationship may be partially responsible for the emergence of rampike and dwarf forms found frequently in dry conditions.Incorporating intrinsic characteristics of planted trees into vegetation restoration project will be instructive and meaningful for species selection.展开更多
Plantations have been widely established to improve ecosystem services and functioning.Black locust,Robinia pseudoacacia L.is a common,widely planted species to control soil erosion on the Loess Plateau.Previous studi...Plantations have been widely established to improve ecosystem services and functioning.Black locust,Robinia pseudoacacia L.is a common,widely planted species to control soil erosion on the Loess Plateau.Previous studies have focused on economic values but the interactions between soil and plant carbon(C),nitrogen(N)and phosphorus(P)remain unknown.Investigating variations of soil,green and senesced leaf C,N and P levels in R.pseudoacacia along a latitudinal gradient is useful to understanding its ecological functions.The results show that soil C,N and senesced leaf N and P significantly decreased with an increase in latitude,but there were no significant changes in the senesced leaf C and soil P.The resorption efficiency of N was related with latitude and soil N levels,and the relation between green leaf N and soil N was significant.These relations suggest that soil N was the key in affecting green leaf N levels.At higher latitudes,senesced leaves had lower N levels associated with higher N resorption efficiency to maintain a stable N content in green leaves.With a decrease of soil N,R.pseudoacacia can enhance N resorption efficiency to meet the demand of growth.Thus,it is an important species for reforestation,especially in nutrient-poor environments.展开更多
Homeostasis is the adaptability of a species to a changing environment.However,the ecological stoichiometric homeostasis of Robinia pseudoacacia L.in diff erent climatic regions is poorly understood but could provide ...Homeostasis is the adaptability of a species to a changing environment.However,the ecological stoichiometric homeostasis of Robinia pseudoacacia L.in diff erent climatic regions is poorly understood but could provide insights into its adaptability in the loess hilly region.This study sampled 20 year-old R.pseudoacacia plantations at 10 sites along a north–south transect on the Loess Plateau.Variations in the ecological stoichiometric characteristics of leaf and soil carbon,nitrogen,and phosphorus were analysed and homeostatic characteristics of leaf ecological stoichiometric parameters in diff erent climates were identifi ed.Factors aff ecting leaf stoichiometry were assessed.The results show that R.pseudoacacia leaves were rich in nitrogen and defi cient in phosphorous during tree growth and development.Nitrogen and phosphorous levels in the soils of the loess region were lower than the average in soils in the rest of China.All ecological stoichiometric parameters of R.pseudoacacia leaves in two diff erent climates were considered“strictly homeostasis”.Precipitation,available phosphorus,and soil C:P were the main factors aff ecting the variation of C:N:P stoichiometry of R.pseudoacacia leaves.R.pseudoacacia in the loess hilly region has strong ecologically homeostatic characteristics and suggests that it is well-adapted to the area.展开更多
基金Under the auspices of National Basic Research Program of China (No.2007CB407205)National High Technology Research and Development Program of China (No.2006BAC01A01)
文摘Leaf trait patterns and their variations with climate are interpreted as an adaptive adjustment to environment.This study assessed the adaptability of planted black locust (Robinia pseudoacacia L.) based on the analysis of leaf traits and the comparison of its leaf traits with inter-specific ones existing in the same area.We measured some water and N use related leaf traits: leaf dry mass per unit area (LMA) and N,P and K concentrations based on both leaf area (Narea,Parea and Karea) and leaf mass (Nmass,Pmass and Kmass) of R.pseudoacacia at 31 sites along a water stress gradient in North Shaanxi Province,China.The results show that leaves of R.pseudoacacia have high Nmass and low LMA in the study area.High Nmass and low LMA are usually representative of luxurious resource use,and will advance plant resource competitiveness in high-resource conditions.As a whole,LMA-nutrient relationships of R.pseudoacacia display patterns that are fairly similar to the inter-specific relationships in both direction and intensity.The tendency for LMA and Narea to increase with decreasing water availability and the positive correlation between LMA and Narea reflect the trend for R.pseudoacacia to enhance water use efficiency (WUE) at the expense of down-regulated photosynthetic N use efficiency (PNUE) and high construction cost in dry conditions.However,the positive relationship between LMA and Narea in high mean annual precipitation (MAP) area is either unremarkable or reversed with decreasing water availability.This implies a lower photosynthetic capacity and a higher construction cost for high-LMA leaves.The inter-specific relationship between LMA and Narea is positive and does not change with water availability.This difference between inter-species and intra-species may be due to more diversified anatomies and more specialised structures for inter-species than intra-species.The failure of R.pseudoacacia adaption to dry conditions reflected by LMA-Narea relationship may be partially responsible for the emergence of rampike and dwarf forms found frequently in dry conditions.Incorporating intrinsic characteristics of planted trees into vegetation restoration project will be instructive and meaningful for species selection.
基金This study was supported by the National Natural Science Foundation of China(41907051 and 41671280)International Partnership Program of Chinese Academy of Sciences(161461KYSB20170013)China Postdoctoral Science Foundation(219M662678).
文摘Plantations have been widely established to improve ecosystem services and functioning.Black locust,Robinia pseudoacacia L.is a common,widely planted species to control soil erosion on the Loess Plateau.Previous studies have focused on economic values but the interactions between soil and plant carbon(C),nitrogen(N)and phosphorus(P)remain unknown.Investigating variations of soil,green and senesced leaf C,N and P levels in R.pseudoacacia along a latitudinal gradient is useful to understanding its ecological functions.The results show that soil C,N and senesced leaf N and P significantly decreased with an increase in latitude,but there were no significant changes in the senesced leaf C and soil P.The resorption efficiency of N was related with latitude and soil N levels,and the relation between green leaf N and soil N was significant.These relations suggest that soil N was the key in affecting green leaf N levels.At higher latitudes,senesced leaves had lower N levels associated with higher N resorption efficiency to maintain a stable N content in green leaves.With a decrease of soil N,R.pseudoacacia can enhance N resorption efficiency to meet the demand of growth.Thus,it is an important species for reforestation,especially in nutrient-poor environments.
基金supported by the Science and Technology Innovation Program of the Shaanxi Academy of Forestry(SXLK2022-02-03)the National Natural Science Foundation of China(42077452).
文摘Homeostasis is the adaptability of a species to a changing environment.However,the ecological stoichiometric homeostasis of Robinia pseudoacacia L.in diff erent climatic regions is poorly understood but could provide insights into its adaptability in the loess hilly region.This study sampled 20 year-old R.pseudoacacia plantations at 10 sites along a north–south transect on the Loess Plateau.Variations in the ecological stoichiometric characteristics of leaf and soil carbon,nitrogen,and phosphorus were analysed and homeostatic characteristics of leaf ecological stoichiometric parameters in diff erent climates were identifi ed.Factors aff ecting leaf stoichiometry were assessed.The results show that R.pseudoacacia leaves were rich in nitrogen and defi cient in phosphorous during tree growth and development.Nitrogen and phosphorous levels in the soils of the loess region were lower than the average in soils in the rest of China.All ecological stoichiometric parameters of R.pseudoacacia leaves in two diff erent climates were considered“strictly homeostasis”.Precipitation,available phosphorus,and soil C:P were the main factors aff ecting the variation of C:N:P stoichiometry of R.pseudoacacia leaves.R.pseudoacacia in the loess hilly region has strong ecologically homeostatic characteristics and suggests that it is well-adapted to the area.