Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest benef...Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest beneficiaries of these advances,through the design of a facile four-dimensional(4D)FGAM process that can grant an intelligent stimuli-responsive mechanical functionality to the printed objects.Herein,we present a simple binder jetting approach for the 4D printing of functionally graded porous multi-materials(FGMM)by introducing rationally designed graded multiphase feeder beds.Compositionally graded cross-linking agents gradually form stable porous network structures within aqueous polymer particles,enabling programmable hygroscopic deformation without complex mechanical designs.Furthermore,a systematic bed design incorporating additional functional agents enables a multi-stimuli-responsive and untethered soft robot with stark stimulus selectivity.The biodegradability of the proposed 4D-printed soft robot further ensures the sustainability of our approach,with immediate degradation rates of 96.6%within 72 h.The proposed 4D printing concept for FGMMs can create new opportunities for intelligent and sustainable additive manufacturing in soft robotics.展开更多
The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,rob...The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,robotic-assisted surgery has shown numerous advantages,including more precision,efficiency,minimal invasiveness,and safety than is possible with conventional techniques,which are research hotspots and cutting-edge trends.This article reviewed the history of medical robot development and seminal research papers about current research progress.Taking the autonomous dental implant robotic system as an example,the advantages and prospects of medical robotic systems would be discussed which would provide a reference for future research.展开更多
Physical assistive robotics are oriented to support and improve functional capacities of people.In physical rehabilitation,robots are indeed useful for functional recovery of affected limb.However,there are still open...Physical assistive robotics are oriented to support and improve functional capacities of people.In physical rehabilitation,robots are indeed useful for functional recovery of affected limb.However,there are still open questions related to technological aspects.This work presents a systematic review of upper limb rehabilitation robotics in order to analyze and establish technological challenges and future directions in this area.A bibliometric analysis was performed for the systematic literature review.Literature from the last six years,conducted between August 2020 and May 2021,was reviewed.The methodology for the literature search and a bibliometric analysis of the metadata are presented.After a preliminary search resulted in 820 articles,a total of 66 articles were included.A concurrency network and bibliographic analysis were provided.And an analysis of occurrences,taxonomy,and rehabilitation robotics reported in the literature is presented.This review aims to provide to the scientific community an overview of the state of the art in assistive robotics for upper limb physical rehabilitation.The literature analysis allows access to a gap of unexplored options to define the technological prospects applied to upper limb physical rehabilitation robotics.展开更多
The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots call...The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots called Smart Gait.Smart Gait contains three modules:swing leg trajectory optimization,gait period&duty optimization,and gait sequence optimization.The full dynamics of a single leg,and the centroid dynamics of the overall robot are considered in the respective modules.The Smart Gait not only helps the robot to decrease the energy consumption when in locomotion,mostly,it enables the hexapod robot to determine its gait pattern transitions based on its current state,instead of repeating the formalistic clock-set step cycles.Our Smart Gait framework allows the hexapod robot to behave nimbly as a living animal when in 3D movements for the first time.The Smart Gait framework combines offline and online optimizations without any fussy data-driven training procedures,and it can run efficiently on board in real-time after deployment.Various experiments are carried out on the hexapod robot LittleStrong.The results show that the energy consumption is reduced by 15.9%when in locomotion.Adaptive gait patterns can be generated spontaneously both in regular and challenge environments,and when facing external interferences.展开更多
Colon cancer has the fifth highest incidence worldwide and has the sixth highest mortality.Compared with rectal cancer,colon cancer currently has the worst 5-year overall survival for patients with stage II and III di...Colon cancer has the fifth highest incidence worldwide and has the sixth highest mortality.Compared with rectal cancer,colon cancer currently has the worst 5-year overall survival for patients with stage II and III disease.Complete mesocolic excision has been developed as a standardized and optimized surgical technique for the excision of colon cancers.This technique has traditionally been performed through an open approach since laparoscopy is generally considered technically challenging.The robotic approach has been slowly implemented for colon cancer,but the newest robotic platforms allow for a safer and optimized approach for right colon cancer.Several robotic approaches have been developed and explored.The expansion of the current robotic platform ecosystem is gradually providing new outputs in the application of the robotic approach to complete mesocolic excision.This review gains an oversight of existing literature on robotic complete mesocolic excision for right colon cancer(learning curve,training,techniques,approach,platforms,and future perspectives).展开更多
This paper provides a comprehensive review of the current status, advancements, and future prospects of humanoid robots, highlighting their significance in driving the evolution of next-generation industries. By analy...This paper provides a comprehensive review of the current status, advancements, and future prospects of humanoid robots, highlighting their significance in driving the evolution of next-generation industries. By analyzing various research endeavors and key technologies, encompassing ontology structure,control and decision-making, and perception and interaction, a holistic overview of the current state of humanoid robot research is presented. Furthermore, emerging challenges in the field are identified, emphasizing the necessity for a deeper understanding of biological motion mechanisms, improved structural design,enhanced material applications, advanced drive and control methods, and efficient energy utilization. The integration of bionics, brain-inspired intelligence, mechanics, and control is underscored as a promising direction for the development of advanced humanoid robotic systems. This paper serves as an invaluable resource, offering insightful guidance to researchers in the field,while contributing to the ongoing evolution and potential of humanoid robots across diverse domains.展开更多
Humanoid robots have attracted much attention by virtue of their compatibility with human environments.However,biped humanoids with immense promise still cannot function steadily and reliably in real-world settings in...Humanoid robots have attracted much attention by virtue of their compatibility with human environments.However,biped humanoids with immense promise still cannot function steadily and reliably in real-world settings in the current state.Hence,rationally combining a humanoid robot with different stable mobile platforms is a favoured solution for diverse scenarios.Here,a new versatile humanoid robot platform,aiming to provide a generic solution that can be flexibly deployed in diverse scenarios,for example,indoors and fields is presented.Versatile humanoid robot platform incorporates multimodal perception,and extensible interfaces on hardware and software,allowing it to be rapidly integrated with different mobile platforms and end-effectors,only through easyto-assemble interfaces.Additionally,the platform has achieved impressive integration,lightness,dexterity,and strength in its class,with human-like size and rich perception,targeted to have human-intelligent manipulation skills for human-engineered environments.Overall,this article elaborates on the reasoning behind the design choices,and outlines each subsystem.Lastly,the essential performance of the platform is successfully demonstrated in a set of experiments with precise and dexterous manipulation,and human–robot collaboration requirements.展开更多
BACKGROUND The results of existing lower extremity robotics studies are conflicting,and few relevant clinical trials have examined short-term efficacy.In addition,most of the outcome indicators in existing studies are...BACKGROUND The results of existing lower extremity robotics studies are conflicting,and few relevant clinical trials have examined short-term efficacy.In addition,most of the outcome indicators in existing studies are scales,which are not objective enough.We used the combination of objective instrument measurement and scale to explore the short-term efficacy of the lower limb A3 robot,to provide a clinical reference.AIM To investigate the improvement of lower limb walking ability and balance in stroke treated by A3 lower limb robot.METHODS Sixty stroke patients were recruited prospectively in a hospital and randomized into the A3 group and the control group.They received 30 min of A3 robotics training and 30 min of floor walking training in addition to 30 min of regular rehabilitation training.The training was performed five times a week,once a day,for 2 wk.The t-test or non-parametric test was used to compare the threedimensional gait parameters and balance between the two groups before and after treatment.RESULTS The scores of basic activities of daily living,Stroke-Specific Quality of Life Scale,FM balance meter,Fugl-Meyer Assessment scores,Rivermead Mobility Index,Stride speed,Stride length,and Time Up and Go test in the two groups were significantly better than before treatment(19.29±12.15 vs 3.52±4.34;22.57±17.99 vs 4.07±2.51;1.21±0.83 vs 0.18±0.40;3.50±3.80 vs 0.96±2.08;2.07±1.21 vs 0.41±0.57;0.89±0.63 vs 0.11±0.32;12.38±9.00 vs 2.80±3.43;18.84±11.24 vs 3.80±10.83;45.12±69.41 vs 8.41±10.20;29.45±16.62 vs 8.68±10.74;P<0.05).All outcome indicators were significantly better in the A3 group than in the control group,except the area of the balance parameter.CONCLUSION For the short-term treatment of patients with subacute stroke,the addition of A3 robotic walking training to conventional physiotherapy appears to be more effective than the addition of ground-based walking training.展开更多
Objective:To compare the efficacy of transoral robotic surgery(TORS)and non-robotic surgery(NRS)in the treatment of tongue base tumors.Methods:A total of 45 patients with tongue base tumors treated in our hospital wer...Objective:To compare the efficacy of transoral robotic surgery(TORS)and non-robotic surgery(NRS)in the treatment of tongue base tumors.Methods:A total of 45 patients with tongue base tumors treated in our hospital were selected,and they were divided into the TORS group and NRS group according to different surgical methods.The surgical indicators and postoperative complications of patients in the two groups were compared and analyzed.Results:Compared with the NRS group,the operative time,bleeding volume and length of hospital stay were less in the TORS group,and the postoperative recurrence rate was less in the TORS group than that in the NRS group.The incidence rate of dysphagia and restricted mouth opening in the TORS group was lower than that in the NRS group within 30 d after surgery,and the difference was statistically significant(P<0.05).Conclusion:TORS has better minimally invasive advantages in the treatment of tongue base tumors,including less intraoperative bleeding,smaller trauma,shorter length of hospital stay and faster recovery.展开更多
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base...The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.展开更多
BACKGROUND Hemolymphangioma of the jejunum is rare and lacks clinical specificity,and can manifest as gastrointestinal bleeding,abdominal pain,and intestinal obstruction.Computed tomography,magnetic resonance imaging,...BACKGROUND Hemolymphangioma of the jejunum is rare and lacks clinical specificity,and can manifest as gastrointestinal bleeding,abdominal pain,and intestinal obstruction.Computed tomography,magnetic resonance imaging,and other examinations show certain characteristics of the disease,but lack accuracy.Although capsule endoscopy and enteroscopy make up for this deficiency,the diagnosis also still re-quires pathology.CASE SUMMARY A male patient was admitted to the hospital due to abdominal distension and abdominal pain,but a specific diagnosis by computed tomography examination was not obtained.Partial resection of the small intestine was performed by robotic surgery,and postoperative pathological biopsy confirmed the diagnosis of hemo-lymphangioma.No recurrence in the follow-up examination was observed.CONCLUSION Robotic surgery is an effective way to treat hemolymphangioma through minima-lly invasive techniques under the concept of rapid rehabilitation.展开更多
New types of aerial robots(NTARs)have found extensive applications in the military,civilian contexts,scientific research,disaster management,and various other domains.Compared with traditional aerial robots,NTARs exhi...New types of aerial robots(NTARs)have found extensive applications in the military,civilian contexts,scientific research,disaster management,and various other domains.Compared with traditional aerial robots,NTARs exhibit a broader range of morphological diversity,locomotion capabilities,and enhanced operational capacities.Therefore,this study defines aerial robots with the four characteristics of morphability,biomimicry,multi-modal locomotion,and manipulator attachment as NTARs.Subsequently,this paper discusses the latest research progress in the materials and manufacturing technology,actuation technology,and perception and control technology of NTARs.Thereafter,the research status of NTAR systems is summarized,focusing on the frontier development and application cases of flapping-wing microair vehicles,perching aerial robots,amphibious robots,and operational aerial robots.Finally,the main challenges presented by NTARs in terms of energy,materials,and perception are analyzed,and the future development trends of NTARs are summarized in terms of size and endurance,mechatronics,and complex scenarios,providing a reference direction for the follow-up exploration of NTARs.展开更多
To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of...To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of the legarm chain. When the robot performs a task, reconfigurable configuration and mode switching can be achieved using this joint. In contrast from traditional quadruped robots, this robot can stack in a designated area to optimize the occupied volume in a nonworking state. Kinematics modeling and dynamics modeling are established to evaluate the mechanical properties for multiple modes. All working modes of the robot are classified, which can be defined as deployable mode, locomotion mode and operation mode. Based on the stability margin and mechanical modeling, switching analysis and evaluation between each mode is carried out. Finally, the prototype experimental results verify the function realization and switching stability of multimode and provide a design method to integrate and perform multimode for quadruped robots with deployable characteristics.展开更多
The most widely adopted method for diagnosing respiratory infectious diseases is to conduct polymerase chain reaction(PCR)assays on patients’respiratory specimens,which are collected through either nasal or oropharyn...The most widely adopted method for diagnosing respiratory infectious diseases is to conduct polymerase chain reaction(PCR)assays on patients’respiratory specimens,which are collected through either nasal or oropharyngeal swabs.The manual swab sampling process poses a high risk to the examiner and may cause false-negative results owing to improper sampling.In this paper,we propose a pneumatically actuated soft end-effector specifically designed to achieve all of the tasks involved in swab sampling.The soft end-effector utilizes circumferential instability to ensure grasping stability,and exhibits several key properties,including high load-to-weight ratio,error tolerance,and variable swab-tip stiffness,leading to successful automatic robotic oropharyngeal swab sampling,from loosening and tightening the transport medium tube cap,holding the swab,and conducting sampling,to snapping off the swab tail and sterilizing itself.Using an industrial collaborative robotic arm,we integrated the soft end-effector,force sensor,camera,lights,and remote-control stick,and developed a robotic oropharyngeal swab sampling system.Using this swab sampling system,we conducted oropharyngeal swab-sampling tests on 20 volunteers.Our Digital PCR assay results(RNase P RNA gene absolute copy numbers for the samples)revealed that our system successfully collected sufficient numbers of cells from the pharyngeal wall for respiratory disease diagnosis.In summary,we have developed a pharyngeal swab-sampling system based on an“enveloping”soft actuator,studied the sampling process,and imple-mented whole-process robotic oropharyngeal swab-sampling.展开更多
Background:Minimally invasive surgery is the optimal treatment for insulinoma.The present study aimed to compare short-and long-term outcomes of laparoscopic and robotic surgery for sporadic benign insulinoma.Methods:...Background:Minimally invasive surgery is the optimal treatment for insulinoma.The present study aimed to compare short-and long-term outcomes of laparoscopic and robotic surgery for sporadic benign insulinoma.Methods:A retrospective analysis of patients who underwent laparoscopic or robotic surgery for insulinoma at our center between September 2007 and December 2019 was conducted.The demographic,perioperative and postoperative follow-up results were compared between the laparoscopic and robotic groups.Results:A total of 85 patients were enrolled,including 36 with laparoscopic approach and 49 with robotic approach.Enucleation was the preferred surgical procedure.Fifty-nine patients(69.4%)underwent enucleation;among them,26 and 33 patients underwent laparoscopic and robotic surgery,respectively.Robotic enucleation had a lower conversion rate to laparotomy(0 vs.19.2%,P=0.013),shorter operative time(102.0 vs.145.5 min,P=0.008)and shorter postoperative hospital stay(6.0 vs.8.5 d,P=0.002)than laparoscopic enucleation.There were no differences between the groups in terms of intraoperative blood loss,the rates of postoperative pancreatic fistula and complications.After a median follow-up of 65 months,two patients in the laparoscopic group developed a functional recurrence and none of the patients in the robotic group had a recurrence.Conclusions:Robotic enucleation can reduce the conversion rate to laparotomy and shorten operative time,which might lead to a reduction in postoperative hospital stay.展开更多
Traditional proportional-integral-derivative(PID)controllers have achieved widespread success in industrial applications.However,the nonlinearity and uncertainty of practical systems cannot be ignored,even though most...Traditional proportional-integral-derivative(PID)controllers have achieved widespread success in industrial applications.However,the nonlinearity and uncertainty of practical systems cannot be ignored,even though most of the existing research on PID controllers is focused on linear systems.Therefore,developing a PID controller with learning ability is of great significance for complex nonlinear systems.This article proposes a deterministic learning-based advanced PID controller for robot manipulator systems with uncertainties.The introduction of neural networks(NNs)overcomes the upper limit of the traditional PID feedback mechanism’s capability.The proposed control scheme not only guarantees system stability and tracking error convergence but also provides a simple way to choose the three parameters of PID by setting the proportional coefficients.Under the partial persistent excitation(PE)condition,the closed-loop system unknown dynamics of robot manipulator systems are accurately approximated by NNs.Based on the acquired knowledge from the stable control process,a learning PID controller is developed to further improve overall control performance,while overcoming the problem of repeated online weight updates.Simulation studies and physical experiments demonstrate the validity and practicality of the proposed strategy discussed in this article.展开更多
The current parallel ankle rehabilitation robot(ARR)suffers from the problem of difficult real-time alignment of the human-robot joint center of rotation,which may lead to secondary injuries to the patient.This study ...The current parallel ankle rehabilitation robot(ARR)suffers from the problem of difficult real-time alignment of the human-robot joint center of rotation,which may lead to secondary injuries to the patient.This study investigates type synthesis of a parallel self-alignment ankle rehabilitation robot(PSAARR)based on the kinematic characteristics of ankle joint rotation center drift from the perspective of introducing"suitable passive degrees of freedom(DOF)"with a suitable number and form.First,the self-alignment principle of parallel ARR was proposed by deriving conditions for transforming a human-robot closed chain(HRCC)formed by an ARR and human body into a kinematic suitable constrained system and introducing conditions of"decoupled"and"less limb".Second,the relationship between the self-alignment principle and actuation wrenches(twists)of PSAARR was analyzed with the velocity Jacobian matrix as a"bridge".Subsequently,the type synthesis conditions of PSAARR were proposed.Third,a PSAARR synthesis method was proposed based on the screw theory and type of PSAARR synthesis conducted.Finally,an HRCC kinematic model was established to verify the self-alignment capability of the PSAARR.In this study,93 types of PSAARR limb structures were synthesized and the self-alignment capability of a human-robot joint axis was verified through kinematic analysis,which provides a theoretical basis for the design of such an ARR.展开更多
基金supported by National R&D Program through the NRF funded by Ministry of Science and ICT(2021M3D1A2049315)and the Technology Innovation Program(20021909,Development of H2 gas detection films(?0.1%)and process technologies)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)supported by the Basic Science Program through the NRF of Korea,funded by the Ministry of Science and ICT,Korea.(Project Number:NRF-2022R1C1C1008845)supported by Basic Science Research Program through the NRF funded by the Ministry of Education(Project Number:NRF-2022R1A6A3A13073158)。
文摘Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest beneficiaries of these advances,through the design of a facile four-dimensional(4D)FGAM process that can grant an intelligent stimuli-responsive mechanical functionality to the printed objects.Herein,we present a simple binder jetting approach for the 4D printing of functionally graded porous multi-materials(FGMM)by introducing rationally designed graded multiphase feeder beds.Compositionally graded cross-linking agents gradually form stable porous network structures within aqueous polymer particles,enabling programmable hygroscopic deformation without complex mechanical designs.Furthermore,a systematic bed design incorporating additional functional agents enables a multi-stimuli-responsive and untethered soft robot with stark stimulus selectivity.The biodegradability of the proposed 4D-printed soft robot further ensures the sustainability of our approach,with immediate degradation rates of 96.6%within 72 h.The proposed 4D printing concept for FGMMs can create new opportunities for intelligent and sustainable additive manufacturing in soft robotics.
基金supported by the National Natural Science Foundation of China[grant number 81970987].
文摘The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,robotic-assisted surgery has shown numerous advantages,including more precision,efficiency,minimal invasiveness,and safety than is possible with conventional techniques,which are research hotspots and cutting-edge trends.This article reviewed the history of medical robot development and seminal research papers about current research progress.Taking the autonomous dental implant robotic system as an example,the advantages and prospects of medical robotic systems would be discussed which would provide a reference for future research.
基金Supported by Militar Nueva Granada University of Colombia (Grant No.IMP-ING-3127)。
文摘Physical assistive robotics are oriented to support and improve functional capacities of people.In physical rehabilitation,robots are indeed useful for functional recovery of affected limb.However,there are still open questions related to technological aspects.This work presents a systematic review of upper limb rehabilitation robotics in order to analyze and establish technological challenges and future directions in this area.A bibliometric analysis was performed for the systematic literature review.Literature from the last six years,conducted between August 2020 and May 2021,was reviewed.The methodology for the literature search and a bibliometric analysis of the metadata are presented.After a preliminary search resulted in 820 articles,a total of 66 articles were included.A concurrency network and bibliographic analysis were provided.And an analysis of occurrences,taxonomy,and rehabilitation robotics reported in the literature is presented.This review aims to provide to the scientific community an overview of the state of the art in assistive robotics for upper limb physical rehabilitation.The literature analysis allows access to a gap of unexplored options to define the technological prospects applied to upper limb physical rehabilitation robotics.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFF0306202).
文摘The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots called Smart Gait.Smart Gait contains three modules:swing leg trajectory optimization,gait period&duty optimization,and gait sequence optimization.The full dynamics of a single leg,and the centroid dynamics of the overall robot are considered in the respective modules.The Smart Gait not only helps the robot to decrease the energy consumption when in locomotion,mostly,it enables the hexapod robot to determine its gait pattern transitions based on its current state,instead of repeating the formalistic clock-set step cycles.Our Smart Gait framework allows the hexapod robot to behave nimbly as a living animal when in 3D movements for the first time.The Smart Gait framework combines offline and online optimizations without any fussy data-driven training procedures,and it can run efficiently on board in real-time after deployment.Various experiments are carried out on the hexapod robot LittleStrong.The results show that the energy consumption is reduced by 15.9%when in locomotion.Adaptive gait patterns can be generated spontaneously both in regular and challenge environments,and when facing external interferences.
文摘Colon cancer has the fifth highest incidence worldwide and has the sixth highest mortality.Compared with rectal cancer,colon cancer currently has the worst 5-year overall survival for patients with stage II and III disease.Complete mesocolic excision has been developed as a standardized and optimized surgical technique for the excision of colon cancers.This technique has traditionally been performed through an open approach since laparoscopy is generally considered technically challenging.The robotic approach has been slowly implemented for colon cancer,but the newest robotic platforms allow for a safer and optimized approach for right colon cancer.Several robotic approaches have been developed and explored.The expansion of the current robotic platform ecosystem is gradually providing new outputs in the application of the robotic approach to complete mesocolic excision.This review gains an oversight of existing literature on robotic complete mesocolic excision for right colon cancer(learning curve,training,techniques,approach,platforms,and future perspectives).
基金supported by the National Natural Science Foundation of China(62303457,U21A20482)Project funded by China Postdoctoral Science Foundation (2023M733737)the National Key R&D Program of China(2022YFB3303800)。
文摘This paper provides a comprehensive review of the current status, advancements, and future prospects of humanoid robots, highlighting their significance in driving the evolution of next-generation industries. By analyzing various research endeavors and key technologies, encompassing ontology structure,control and decision-making, and perception and interaction, a holistic overview of the current state of humanoid robot research is presented. Furthermore, emerging challenges in the field are identified, emphasizing the necessity for a deeper understanding of biological motion mechanisms, improved structural design,enhanced material applications, advanced drive and control methods, and efficient energy utilization. The integration of bionics, brain-inspired intelligence, mechanics, and control is underscored as a promising direction for the development of advanced humanoid robotic systems. This paper serves as an invaluable resource, offering insightful guidance to researchers in the field,while contributing to the ongoing evolution and potential of humanoid robots across diverse domains.
基金National Natural Science Foundation of China,Grant/Award Number:51875114Self-Planned Task of the State Key Laboratory of Robotics and System,Grant/Award Number:SKLRS202204B。
文摘Humanoid robots have attracted much attention by virtue of their compatibility with human environments.However,biped humanoids with immense promise still cannot function steadily and reliably in real-world settings in the current state.Hence,rationally combining a humanoid robot with different stable mobile platforms is a favoured solution for diverse scenarios.Here,a new versatile humanoid robot platform,aiming to provide a generic solution that can be flexibly deployed in diverse scenarios,for example,indoors and fields is presented.Versatile humanoid robot platform incorporates multimodal perception,and extensible interfaces on hardware and software,allowing it to be rapidly integrated with different mobile platforms and end-effectors,only through easyto-assemble interfaces.Additionally,the platform has achieved impressive integration,lightness,dexterity,and strength in its class,with human-like size and rich perception,targeted to have human-intelligent manipulation skills for human-engineered environments.Overall,this article elaborates on the reasoning behind the design choices,and outlines each subsystem.Lastly,the essential performance of the platform is successfully demonstrated in a set of experiments with precise and dexterous manipulation,and human–robot collaboration requirements.
基金Shaoguan Municipal Health Bureau,No.Y22058Shaoguan City Science and Technology Plan Project,No.220517164531600+1 种基金The clinical trial was approved by the Ethics Committee of the Yuebei People's Hospital(No.KY-2021-327)The program was registered online in the Chinese Clinical Trial Registry(Registration No.ChiCTR2100052767)。
文摘BACKGROUND The results of existing lower extremity robotics studies are conflicting,and few relevant clinical trials have examined short-term efficacy.In addition,most of the outcome indicators in existing studies are scales,which are not objective enough.We used the combination of objective instrument measurement and scale to explore the short-term efficacy of the lower limb A3 robot,to provide a clinical reference.AIM To investigate the improvement of lower limb walking ability and balance in stroke treated by A3 lower limb robot.METHODS Sixty stroke patients were recruited prospectively in a hospital and randomized into the A3 group and the control group.They received 30 min of A3 robotics training and 30 min of floor walking training in addition to 30 min of regular rehabilitation training.The training was performed five times a week,once a day,for 2 wk.The t-test or non-parametric test was used to compare the threedimensional gait parameters and balance between the two groups before and after treatment.RESULTS The scores of basic activities of daily living,Stroke-Specific Quality of Life Scale,FM balance meter,Fugl-Meyer Assessment scores,Rivermead Mobility Index,Stride speed,Stride length,and Time Up and Go test in the two groups were significantly better than before treatment(19.29±12.15 vs 3.52±4.34;22.57±17.99 vs 4.07±2.51;1.21±0.83 vs 0.18±0.40;3.50±3.80 vs 0.96±2.08;2.07±1.21 vs 0.41±0.57;0.89±0.63 vs 0.11±0.32;12.38±9.00 vs 2.80±3.43;18.84±11.24 vs 3.80±10.83;45.12±69.41 vs 8.41±10.20;29.45±16.62 vs 8.68±10.74;P<0.05).All outcome indicators were significantly better in the A3 group than in the control group,except the area of the balance parameter.CONCLUSION For the short-term treatment of patients with subacute stroke,the addition of A3 robotic walking training to conventional physiotherapy appears to be more effective than the addition of ground-based walking training.
文摘Objective:To compare the efficacy of transoral robotic surgery(TORS)and non-robotic surgery(NRS)in the treatment of tongue base tumors.Methods:A total of 45 patients with tongue base tumors treated in our hospital were selected,and they were divided into the TORS group and NRS group according to different surgical methods.The surgical indicators and postoperative complications of patients in the two groups were compared and analyzed.Results:Compared with the NRS group,the operative time,bleeding volume and length of hospital stay were less in the TORS group,and the postoperative recurrence rate was less in the TORS group than that in the NRS group.The incidence rate of dysphagia and restricted mouth opening in the TORS group was lower than that in the NRS group within 30 d after surgery,and the difference was statistically significant(P<0.05).Conclusion:TORS has better minimally invasive advantages in the treatment of tongue base tumors,including less intraoperative bleeding,smaller trauma,shorter length of hospital stay and faster recovery.
基金the China Scholarship Council(202106690037)the Natural Science Foundation of Anhui Province(19080885QE194)。
文摘The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.
基金Supported by Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-015A and No.TJYXZDXK-058B.
文摘BACKGROUND Hemolymphangioma of the jejunum is rare and lacks clinical specificity,and can manifest as gastrointestinal bleeding,abdominal pain,and intestinal obstruction.Computed tomography,magnetic resonance imaging,and other examinations show certain characteristics of the disease,but lack accuracy.Although capsule endoscopy and enteroscopy make up for this deficiency,the diagnosis also still re-quires pathology.CASE SUMMARY A male patient was admitted to the hospital due to abdominal distension and abdominal pain,but a specific diagnosis by computed tomography examination was not obtained.Partial resection of the small intestine was performed by robotic surgery,and postoperative pathological biopsy confirmed the diagnosis of hemo-lymphangioma.No recurrence in the follow-up examination was observed.CONCLUSION Robotic surgery is an effective way to treat hemolymphangioma through minima-lly invasive techniques under the concept of rapid rehabilitation.
基金supported in part by the National Key Research and Development Program of China(2022YFB4701800 and 2021ZD0114503)the National Natural Science Foundation of China(62103140,U22A2057,62173132,and 62133005)+3 种基金the Hunan Leading Talent of Technological Innovation(2022RC3063)the Top Ten Technical Research Projects of Hunan Province(2024GK1010)the Key Research and Development Program of Hunan Province(2023GK2068)the Science and Technology Innovation Program of Hunan Province(2023RC1049).
文摘New types of aerial robots(NTARs)have found extensive applications in the military,civilian contexts,scientific research,disaster management,and various other domains.Compared with traditional aerial robots,NTARs exhibit a broader range of morphological diversity,locomotion capabilities,and enhanced operational capacities.Therefore,this study defines aerial robots with the four characteristics of morphability,biomimicry,multi-modal locomotion,and manipulator attachment as NTARs.Subsequently,this paper discusses the latest research progress in the materials and manufacturing technology,actuation technology,and perception and control technology of NTARs.Thereafter,the research status of NTAR systems is summarized,focusing on the frontier development and application cases of flapping-wing microair vehicles,perching aerial robots,amphibious robots,and operational aerial robots.Finally,the main challenges presented by NTARs in terms of energy,materials,and perception are analyzed,and the future development trends of NTARs are summarized in terms of size and endurance,mechatronics,and complex scenarios,providing a reference direction for the follow-up exploration of NTARs.
基金Supported by National Natural Science Foundation of China (Grant Nos. 52375003, 52205006)National Key R&D Program of China (Grant No. 2019YFB1309600)。
文摘To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of the legarm chain. When the robot performs a task, reconfigurable configuration and mode switching can be achieved using this joint. In contrast from traditional quadruped robots, this robot can stack in a designated area to optimize the occupied volume in a nonworking state. Kinematics modeling and dynamics modeling are established to evaluate the mechanical properties for multiple modes. All working modes of the robot are classified, which can be defined as deployable mode, locomotion mode and operation mode. Based on the stability margin and mechanical modeling, switching analysis and evaluation between each mode is carried out. Finally, the prototype experimental results verify the function realization and switching stability of multimode and provide a design method to integrate and perform multimode for quadruped robots with deployable characteristics.
基金Supported by National Natural Science Foundation of China(Grant Nos.52222502,92048302,and 51975306)Research Project of State Key Laboratory of Mechanical System and Vibration of China(Grant No.MSV201904)Emergency Research Project for COVID-19 from Institute for Precision Medicine of Tsinghua University of China.
文摘The most widely adopted method for diagnosing respiratory infectious diseases is to conduct polymerase chain reaction(PCR)assays on patients’respiratory specimens,which are collected through either nasal or oropharyngeal swabs.The manual swab sampling process poses a high risk to the examiner and may cause false-negative results owing to improper sampling.In this paper,we propose a pneumatically actuated soft end-effector specifically designed to achieve all of the tasks involved in swab sampling.The soft end-effector utilizes circumferential instability to ensure grasping stability,and exhibits several key properties,including high load-to-weight ratio,error tolerance,and variable swab-tip stiffness,leading to successful automatic robotic oropharyngeal swab sampling,from loosening and tightening the transport medium tube cap,holding the swab,and conducting sampling,to snapping off the swab tail and sterilizing itself.Using an industrial collaborative robotic arm,we integrated the soft end-effector,force sensor,camera,lights,and remote-control stick,and developed a robotic oropharyngeal swab sampling system.Using this swab sampling system,we conducted oropharyngeal swab-sampling tests on 20 volunteers.Our Digital PCR assay results(RNase P RNA gene absolute copy numbers for the samples)revealed that our system successfully collected sufficient numbers of cells from the pharyngeal wall for respiratory disease diagnosis.In summary,we have developed a pharyngeal swab-sampling system based on an“enveloping”soft actuator,studied the sampling process,and imple-mented whole-process robotic oropharyngeal swab-sampling.
文摘Background:Minimally invasive surgery is the optimal treatment for insulinoma.The present study aimed to compare short-and long-term outcomes of laparoscopic and robotic surgery for sporadic benign insulinoma.Methods:A retrospective analysis of patients who underwent laparoscopic or robotic surgery for insulinoma at our center between September 2007 and December 2019 was conducted.The demographic,perioperative and postoperative follow-up results were compared between the laparoscopic and robotic groups.Results:A total of 85 patients were enrolled,including 36 with laparoscopic approach and 49 with robotic approach.Enucleation was the preferred surgical procedure.Fifty-nine patients(69.4%)underwent enucleation;among them,26 and 33 patients underwent laparoscopic and robotic surgery,respectively.Robotic enucleation had a lower conversion rate to laparotomy(0 vs.19.2%,P=0.013),shorter operative time(102.0 vs.145.5 min,P=0.008)and shorter postoperative hospital stay(6.0 vs.8.5 d,P=0.002)than laparoscopic enucleation.There were no differences between the groups in terms of intraoperative blood loss,the rates of postoperative pancreatic fistula and complications.After a median follow-up of 65 months,two patients in the laparoscopic group developed a functional recurrence and none of the patients in the robotic group had a recurrence.Conclusions:Robotic enucleation can reduce the conversion rate to laparotomy and shorten operative time,which might lead to a reduction in postoperative hospital stay.
基金supported by the National Natural Science Foundation of China(62203262,62350083)Natural Science Foundation of Shandong Province(ZR2020ZD40,ZR2022QF124)。
文摘Traditional proportional-integral-derivative(PID)controllers have achieved widespread success in industrial applications.However,the nonlinearity and uncertainty of practical systems cannot be ignored,even though most of the existing research on PID controllers is focused on linear systems.Therefore,developing a PID controller with learning ability is of great significance for complex nonlinear systems.This article proposes a deterministic learning-based advanced PID controller for robot manipulator systems with uncertainties.The introduction of neural networks(NNs)overcomes the upper limit of the traditional PID feedback mechanism’s capability.The proposed control scheme not only guarantees system stability and tracking error convergence but also provides a simple way to choose the three parameters of PID by setting the proportional coefficients.Under the partial persistent excitation(PE)condition,the closed-loop system unknown dynamics of robot manipulator systems are accurately approximated by NNs.Based on the acquired knowledge from the stable control process,a learning PID controller is developed to further improve overall control performance,while overcoming the problem of repeated online weight updates.Simulation studies and physical experiments demonstrate the validity and practicality of the proposed strategy discussed in this article.
基金Supported by Key Scientific Research Platforms and Projects of Guangdong Regular Institutions of Higher Education of China(Grant No.2022KCXTD033)Guangdong Provincial Natural Science Foundation of China(Grant No.2023A1515012103)+1 种基金Guangdong Provincial Scientific Research Capacity Improvement Project of Key Developing Disciplines of China(Grant No.2021ZDJS084)National Natural Science Foundation of China(Grant No.52105009).
文摘The current parallel ankle rehabilitation robot(ARR)suffers from the problem of difficult real-time alignment of the human-robot joint center of rotation,which may lead to secondary injuries to the patient.This study investigates type synthesis of a parallel self-alignment ankle rehabilitation robot(PSAARR)based on the kinematic characteristics of ankle joint rotation center drift from the perspective of introducing"suitable passive degrees of freedom(DOF)"with a suitable number and form.First,the self-alignment principle of parallel ARR was proposed by deriving conditions for transforming a human-robot closed chain(HRCC)formed by an ARR and human body into a kinematic suitable constrained system and introducing conditions of"decoupled"and"less limb".Second,the relationship between the self-alignment principle and actuation wrenches(twists)of PSAARR was analyzed with the velocity Jacobian matrix as a"bridge".Subsequently,the type synthesis conditions of PSAARR were proposed.Third,a PSAARR synthesis method was proposed based on the screw theory and type of PSAARR synthesis conducted.Finally,an HRCC kinematic model was established to verify the self-alignment capability of the PSAARR.In this study,93 types of PSAARR limb structures were synthesized and the self-alignment capability of a human-robot joint axis was verified through kinematic analysis,which provides a theoretical basis for the design of such an ARR.