The flexible contact and machining with wide strip are two prominent advantages for the robotic belt grinding system, which can be widely used to improve the surface quality and machining efficiency while finishing th...The flexible contact and machining with wide strip are two prominent advantages for the robotic belt grinding system, which can be widely used to improve the surface quality and machining efficiency while finishing the workpieces with sculptured surfaces. There lacks research on grinding path planning with the constraint of curvature. With complicated contact between the contact wheel and the workpiece, the grinding paths for robot can be obtained by the theory of contact kinematics. The grinding process must satisfy the universal demands of the belt grinding technologies, and the most important thing is to make the contact wheel conform to the local geometrical features on the contact area. For the local surfaces with small curvature, the curve length between the neighboring cutting locations becomes longer to ensure processing efficiency. Otherwise, for the local areas with large curvature, the curve length becomes shorter to ensure machining accuracy. A series of planes are created to intersect with the target surface to be ground, and the corresponding sectional profile curves are obtained. For each curve, the curve length between the neighboring cutting points is optimized by inserting a cutter location at the local area with large curvatures. A method of generating the grinding paths including curve length spacing optimization is set up. The validity is completely approved by the off-line simulation, and during the grinding experiments with the method, the quality of surface is improved. The path planning method provides a theoretical support for the smooth and accuracy path of robotic surface grinding.展开更多
文摘The flexible contact and machining with wide strip are two prominent advantages for the robotic belt grinding system, which can be widely used to improve the surface quality and machining efficiency while finishing the workpieces with sculptured surfaces. There lacks research on grinding path planning with the constraint of curvature. With complicated contact between the contact wheel and the workpiece, the grinding paths for robot can be obtained by the theory of contact kinematics. The grinding process must satisfy the universal demands of the belt grinding technologies, and the most important thing is to make the contact wheel conform to the local geometrical features on the contact area. For the local surfaces with small curvature, the curve length between the neighboring cutting locations becomes longer to ensure processing efficiency. Otherwise, for the local areas with large curvature, the curve length becomes shorter to ensure machining accuracy. A series of planes are created to intersect with the target surface to be ground, and the corresponding sectional profile curves are obtained. For each curve, the curve length between the neighboring cutting points is optimized by inserting a cutter location at the local area with large curvatures. A method of generating the grinding paths including curve length spacing optimization is set up. The validity is completely approved by the off-line simulation, and during the grinding experiments with the method, the quality of surface is improved. The path planning method provides a theoretical support for the smooth and accuracy path of robotic surface grinding.