This paper introduces the architecture and implementation of an industrial robot control system based on Windows NT. This robot control system, which is based on a single-processor structure, can run on general indust...This paper introduces the architecture and implementation of an industrial robot control system based on Windows NT. This robot control system, which is based on a single-processor structure, can run on general industrial computers. Owing to using Windows NT's real-time extension RTX, the control system can achieve good realtime performance and friendly user interface in one general-purpose operating system. A three layer hierarchical architecture of control software is proposed to make the system more scalable and flexible. Furthermore a communication and configuration system is implemented to enable modules to communicate with each other, which make the control system scalable and flexible.展开更多
To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee...To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee robustness to parametric and dynamics uncertainties and can also reject any bounded, immeasurable disturbances entering the system. The stability of the proposed controller is proven by the Lyapunov method. The proposed controller can easily be implemented and the stability of the closed system can be ensured; the tracking error and adaptation parameter error are uniformly ultimately bounded (UUB). Finally, some simulation examples are utilized to illustrate the control performance.展开更多
An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an externa...An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an external load to DC motor. Both the motor module and the load module are crea- ted in Simulink to achieve simulation results closer to real robot system. In this way, it can well veri- fy the performance of the improved single-neuron PID controller, which is a combined controller of normal PID controller and single-neuron PID controller. Besides, an intelligent switcher can help to realize the function of choosing a better control algorithm according to motor' s velocity output. Sim- ulated results confirm the rapid and stable response of the improved PID controller. Moreover, the improved single-neuron PID controller has an excellent ability to overcome the load impact and su- press the jamming signals. At last, a GUI interface platform is built to make the controller easier to be applied in other robot systems.展开更多
Aiming at the welding condition of space complex seam is uncertain and the intelligence of welding robot is unideal, a two-wheeled mobile robot is developed. It not only has the capacity of autonomous decision and avo...Aiming at the welding condition of space complex seam is uncertain and the intelligence of welding robot is unideal, a two-wheeled mobile robot is developed. It not only has the capacity of autonomous decision and avoiding obstacles, but also can flexibly move and strongly adapt variable environment. The composition of the welding robot is described and the dynamic model is established. The feasible control strategy and control algorithm is put forward. The simulation experiments of real world are conducted, the results are satisfying.展开更多
A new hybrid event based control architecture for tele-robotic systems controlled through the Internet is pro-posed in this paper. Different from the traditional event based control method, the new framework does not ...A new hybrid event based control architecture for tele-robotic systems controlled through the Internet is pro-posed in this paper. Different from the traditional event based control method, the new framework does not require every part of the system to be strictly event synchronized. Instead, it allows time referenced control components to be integrated into this framework, which makes it more convenient to develop Internet based control systems. Since there are two reference variables, time and event, in this architecture, how to coordinate these components with different references to keep the stability of the whole system is discussed in detail in this paper. To verify this new idea, an experiment was conducted to control the end effector of a PUMA robot tracking a continuous state trajectory given on-line by the remote operator. Ex-perimental results confirmed the stability of such systems being controlled through the Internet in real-time.展开更多
The design of controllers for robots is a complex system that is to be dealt with several tasks in real time for enabling the robots to function independently.The distributed robotic control system can be used in real...The design of controllers for robots is a complex system that is to be dealt with several tasks in real time for enabling the robots to function independently.The distributed robotic control system can be used in real time for resolving various challenges such as localization,motion controlling,mapping,route planning,etc.The distributed robotic control system can manage different kinds of heterogenous devices.Designing a distributed robotic control system is a challenging process as it needs to operate effectually under different hardware configurations and varying computational requirements.For instance,scheduling of resources(such as communication channel,computation unit,robot chassis,or sensor input)to the various system components turns out to be an essential requirement for completing the tasks on time.Therefore,resource scheduling is necessary for ensuring effective execution.In this regard,this paper introduces a novel chaotic shell game optimization algorithm(CSGOA)for resource scheduling,known as the CSGOA-RS technique for the distributed robotic control system environment.The CSGOA technique is based on the integration of the chaotic maps concept to the SGO algorithm for enhancing the overall performance.The CSGOA-RS technique is designed for allocating the resources in such a way that the transfer time is minimized and the resource utilization is increased.The CSGOA-RS technique is applicable even for the unpredicted environment where the resources are to be allotted dynamically based on the early estimations.For validating the enhanced performance of the CSGOA-RS technique,a series of simulations have been carried out and the obtained results have been examined with respect to a selected set of measures.The resultant outcomes highlighted the promising performance of the CSGOA-RS technique over the other resource scheduling techniques.展开更多
In this paper, we deal with a remote robot system in which a user can operate an industrial robot with a force sensor at a remote location by using a haptic interface device. We apply a method using the wave filter to...In this paper, we deal with a remote robot system in which a user can operate an industrial robot with a force sensor at a remote location by using a haptic interface device. We apply a method using the wave filter together with the phase control filter which was previously proposed by the authors to the remote robot system for stabilization control. We also propose a method to enhance the haptic quality. By experiment, we demonstrate the effectiveness of the proposed method. We compare the proposed method with the conventional method quantitatively and clarify which domains the proposed method is applied to more effectively.展开更多
This paper proposes robot position control using force information for cooperative work between two remote robot systems with force feedback in each of which a user operates a remote robot by using a haptic interface ...This paper proposes robot position control using force information for cooperative work between two remote robot systems with force feedback in each of which a user operates a remote robot by using a haptic interface device while observing work of the robot with a video camera. We also investigate the effect of the proposed control by experiment. As cooperative work, we deal with work in which two robots carry an object together. The robot position control using force information finely adjusts the position of the robot arm to reduce the force applied to the object. Thus, the purpose of the control is to avoid large force so that the object is not broken. In our experiment, we make a comparison among the following three cases in order to clarify how to carry out the control effectively. In the first case, the two robots are operated manually by a user with his/her both hands. In the second case, one robot is operated manually by a user, and the other robot is moved automatically under the proposed control. In the last case, the object is carried directly by a human instead of the robot which is operated by the user in the second case. As a result, experimental results demonstrate that the control can help each system operated manually by the user to carry the object smoothly.展开更多
Based on reference[1], the Automatic Control System of the Excavating Process (ACSEP) is studied and aualyzed In this paper- At first, the general structure of the control system is discussed- And theo depeded on the ...Based on reference[1], the Automatic Control System of the Excavating Process (ACSEP) is studied and aualyzed In this paper- At first, the general structure of the control system is discussed- And theo depeded on the kinematical equations, the "Generator or Expected link variable (GE)" and "Generator of Actual bucket trajectory (CA)" are put forward. Finally, based on the current technology and existing techniques of WD-400 Mechanical Forward Excavator (MFE), the automatic system of excavating process composed of two relatively indepodent sub-systems is designed with simple but practical structure’ According to the computer simulation, this control system has high tracking precision to the desired trajectory and good adaptive capacity to the load disturbance.展开更多
To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction ...To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction under the direct torque control system of brushless DC motor. First,the arm joint of the humanoid robot is modelled. Then the speed controller model and the influence of the initial value of the integral element on the system are analyzed. On the basis of the traditional antiwindup controller,an integral state estimator is set up. Under the condition of different load torques and the given speed,the integral steady-state value is estimated. Therefore the accumulation of the speed error terminates when the integrator reaches saturation. Then the predicted integral steady-state value is used as the initial value of the regulator to enter the linear region to make the system achieve the purpose of anti-windup. The simulation results demonstrate that the control strategy for the humanoid robot arm joint based on integral state prediction can play the role of anti-windup and suppress the overshoot of the system effectively. The system has a good dynamic performance.展开更多
A new fault-tolerant control scheme is proposed for a nonlinear collaborative system that contains two robot subsystems. When fault occurs in one subsystem, the fault-free subsystem is used to compensate the fault inf...A new fault-tolerant control scheme is proposed for a nonlinear collaborative system that contains two robot subsystems. When fault occurs in one subsystem, the fault-free subsystem is used to compensate the fault influence of the faulty one on the whole collaborative system. When the faulty subsystem could not repair itself or the repair process needs a long time, the controller of the fault-free subsystem is reconfigured using the fault diagnosis information and other measured infor- mation, leading to the fault tolerant control of the robot collaborative system. Simulations of fault tolerant control for the robot collaborative system show the effectiveness of the proposed method.展开更多
This paper describes the basic structure and design and operation principle of the hydraulic drive and control system with two pumps and two circuits. The manipulator of the cone collecting robot designed is full driv...This paper describes the basic structure and design and operation principle of the hydraulic drive and control system with two pumps and two circuits. The manipulator of the cone collecting robot designed is full driven by hydraulic, which has five freedoms. The computer and electrohydraulic proportion velocity regulating valve were installed to realize open loop serve control for reducing cost and easy application.展开更多
This paper deals with control system design and implementation problems encountered in multiple robot systems. The methodology developed is depicted by a set of coordination mechanisms using hierarchical net structure...This paper deals with control system design and implementation problems encountered in multiple robot systems. The methodology developed is depicted by a set of coordination mechanisms using hierarchical net structures and their accompanying rules. With the net models, the hierarchical and distributed control system is designed for an assembly task. Synchronization commands allow coordination of the movements of the robots. The net models make concurrency of the movements of the robots transparent to users. The net based machine controller executes robot motion control through the communication with the external robot controller using the command/response concept. Sensory signals indicating the change of state of robots are used to trigger or initiate tasks. Simultaneous movement of the robots is obtained by creating different background threads running in parallel under Windows OS. The multilevel hierarchical control system can be consistently constructed using net models.展开更多
In response to the frequent safety accidents of industrial robots, this paper designs and implements a safety detection system for robot control. It can perform real-time security detection of robot operations on indu...In response to the frequent safety accidents of industrial robots, this paper designs and implements a safety detection system for robot control. It can perform real-time security detection of robot operations on industrial production lines to improve the security and reliability of robot control systems. This paper designs and implements a robot control system based Snort-BASE for real-time online detection of DoS attacks. The system uses a six-degree-of-freedom robotic arm as an example, uses Snort to record the network communication data of the robot arm control system in real time, and filters the network traffic through self-defined rules, and then uses the BASE analysis platform to achieve security analysis of the network traffic. The solution verifies the effectiveness of online real-time detection of attacks and visualisation of attack records by designing simulated robotic arm and real robotic arm attack experiments respectively, thus achieving the security of network communication of the robot remote control system.展开更多
Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controll...Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controller that based on Fuzzy and PID control method. The results of simulation show that the dynamic and steady performances of the intelligent controller are better than that of single PID or Fuzzy controller. This paper has made a detail theoretical analysis of the constitution design and real-time controlled software and brought up the design and fulfillment method of multi-task real-time control software of high precisely and numerically controlled welding positioner, which has a good result in practice.展开更多
This paper introduces a new control strategy for heterogeneous multi-robots systems dedicated to industrial logistic setups. This control strategy is based on both distributed intelligence and machine learning and inv...This paper introduces a new control strategy for heterogeneous multi-robots systems dedicated to industrial logistic setups. This control strategy is based on both distributed intelligence and machine learning and involves three parts: the rigid formation controller, the perception system and the path planner. Our controller is event-based and thus its control-coordination strategy can be self-adaptive and applied to real dynamic environment. During the navigating process, the multi-robots system derives the environment model, performs the path planning process that guaranties both the transportation constraints and the obstacle avoidance. For the validation, both simulation and real robot experiments are performed. The results show that the developed control strategy can be well used for realistic logistics applications.展开更多
The large scale and complex manufacturing systems have a hierarchical structure where a system is composed several lines with some stations and each station also have several machines and so on. In such a hierarchical...The large scale and complex manufacturing systems have a hierarchical structure where a system is composed several lines with some stations and each station also have several machines and so on. In such a hierarchical structure, the controllers are geographically distributed according to their physical structure. So it is desirable to realize the hierarchical and distributed control. In this paper, a methodology is presented using Petri nets for hierarchical and distributed control. The Petri net representation of discrete event manufacturing processes is decomposed and distributed into the machine controllers, which are coordinated through communication between the coordinator and machine controllers so that the decomposed transitions fire at the same time. Implementation of a hierarchical and distributed control system is described for an example robotic manufacturing system. The demonstrations show that the proposed system can be used as an effective tool for consistent modeling and control of large and complex manufacturing systems.展开更多
In this paper, we present a vision guided robotic ball-beam balancing control system, consisting of a robot manipulator (actuator), a ball-beam system (plant) and a machine vision system (feedback). The machine vision...In this paper, we present a vision guided robotic ball-beam balancing control system, consisting of a robot manipulator (actuator), a ball-beam system (plant) and a machine vision system (feedback). The machine vision system feedbacks real-time beam angle and ball position data at a speed of 50 frames per second. Based on feedback data, the end-effector of a robot manipulator is driven to control the ball position by maneuvering of the inclination angle of the ball-beam system. The overall control system is implemented with two FPGA chips, one for machine vision processing, and one for robot joints servo PID controllers as well as ball position PD controller. Experiments are performed on a 5-axes robot manipulator to validate the proposed ball beam balancing control system.展开更多
基金Supported by National Natural Science foundation of China (No. 69975014)
文摘This paper introduces the architecture and implementation of an industrial robot control system based on Windows NT. This robot control system, which is based on a single-processor structure, can run on general industrial computers. Owing to using Windows NT's real-time extension RTX, the control system can achieve good realtime performance and friendly user interface in one general-purpose operating system. A three layer hierarchical architecture of control software is proposed to make the system more scalable and flexible. Furthermore a communication and configuration system is implemented to enable modules to communicate with each other, which make the control system scalable and flexible.
基金the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (No.706043)Hunan Provincial Natural Science Foundation of China (No.06JJ50121)the National Natural Science Foundation of China (No.60775047).
文摘To deal with the uncertainty factors of robotic systems, a robust adaptive tracking controller is proposed. The knowledge of the uncertainty factors is assumed to be unidentified; the proposed controller can guarantee robustness to parametric and dynamics uncertainties and can also reject any bounded, immeasurable disturbances entering the system. The stability of the proposed controller is proven by the Lyapunov method. The proposed controller can easily be implemented and the stability of the closed system can be ensured; the tracking error and adaptation parameter error are uniformly ultimately bounded (UUB). Finally, some simulation examples are utilized to illustrate the control performance.
文摘An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an external load to DC motor. Both the motor module and the load module are crea- ted in Simulink to achieve simulation results closer to real robot system. In this way, it can well veri- fy the performance of the improved single-neuron PID controller, which is a combined controller of normal PID controller and single-neuron PID controller. Besides, an intelligent switcher can help to realize the function of choosing a better control algorithm according to motor' s velocity output. Sim- ulated results confirm the rapid and stable response of the improved PID controller. Moreover, the improved single-neuron PID controller has an excellent ability to overcome the load impact and su- press the jamming signals. At last, a GUI interface platform is built to make the controller easier to be applied in other robot systems.
基金Supported by the Scientific Research Foundation for the Returned 0verseas Chinese Scholars, State Education Ministry, and National Natural Science Foundation of China (60474005)
文摘Aiming at the welding condition of space complex seam is uncertain and the intelligence of welding robot is unideal, a two-wheeled mobile robot is developed. It not only has the capacity of autonomous decision and avoiding obstacles, but also can flexibly move and strongly adapt variable environment. The composition of the welding robot is described and the dynamic model is established. The feasible control strategy and control algorithm is put forward. The simulation experiments of real world are conducted, the results are satisfying.
文摘A new hybrid event based control architecture for tele-robotic systems controlled through the Internet is pro-posed in this paper. Different from the traditional event based control method, the new framework does not require every part of the system to be strictly event synchronized. Instead, it allows time referenced control components to be integrated into this framework, which makes it more convenient to develop Internet based control systems. Since there are two reference variables, time and event, in this architecture, how to coordinate these components with different references to keep the stability of the whole system is discussed in detail in this paper. To verify this new idea, an experiment was conducted to control the end effector of a PUMA robot tracking a continuous state trajectory given on-line by the remote operator. Ex-perimental results confirmed the stability of such systems being controlled through the Internet in real-time.
文摘The design of controllers for robots is a complex system that is to be dealt with several tasks in real time for enabling the robots to function independently.The distributed robotic control system can be used in real time for resolving various challenges such as localization,motion controlling,mapping,route planning,etc.The distributed robotic control system can manage different kinds of heterogenous devices.Designing a distributed robotic control system is a challenging process as it needs to operate effectually under different hardware configurations and varying computational requirements.For instance,scheduling of resources(such as communication channel,computation unit,robot chassis,or sensor input)to the various system components turns out to be an essential requirement for completing the tasks on time.Therefore,resource scheduling is necessary for ensuring effective execution.In this regard,this paper introduces a novel chaotic shell game optimization algorithm(CSGOA)for resource scheduling,known as the CSGOA-RS technique for the distributed robotic control system environment.The CSGOA technique is based on the integration of the chaotic maps concept to the SGO algorithm for enhancing the overall performance.The CSGOA-RS technique is designed for allocating the resources in such a way that the transfer time is minimized and the resource utilization is increased.The CSGOA-RS technique is applicable even for the unpredicted environment where the resources are to be allotted dynamically based on the early estimations.For validating the enhanced performance of the CSGOA-RS technique,a series of simulations have been carried out and the obtained results have been examined with respect to a selected set of measures.The resultant outcomes highlighted the promising performance of the CSGOA-RS technique over the other resource scheduling techniques.
文摘In this paper, we deal with a remote robot system in which a user can operate an industrial robot with a force sensor at a remote location by using a haptic interface device. We apply a method using the wave filter together with the phase control filter which was previously proposed by the authors to the remote robot system for stabilization control. We also propose a method to enhance the haptic quality. By experiment, we demonstrate the effectiveness of the proposed method. We compare the proposed method with the conventional method quantitatively and clarify which domains the proposed method is applied to more effectively.
文摘This paper proposes robot position control using force information for cooperative work between two remote robot systems with force feedback in each of which a user operates a remote robot by using a haptic interface device while observing work of the robot with a video camera. We also investigate the effect of the proposed control by experiment. As cooperative work, we deal with work in which two robots carry an object together. The robot position control using force information finely adjusts the position of the robot arm to reduce the force applied to the object. Thus, the purpose of the control is to avoid large force so that the object is not broken. In our experiment, we make a comparison among the following three cases in order to clarify how to carry out the control effectively. In the first case, the two robots are operated manually by a user with his/her both hands. In the second case, one robot is operated manually by a user, and the other robot is moved automatically under the proposed control. In the last case, the object is carried directly by a human instead of the robot which is operated by the user in the second case. As a result, experimental results demonstrate that the control can help each system operated manually by the user to carry the object smoothly.
文摘Based on reference[1], the Automatic Control System of the Excavating Process (ACSEP) is studied and aualyzed In this paper- At first, the general structure of the control system is discussed- And theo depeded on the kinematical equations, the "Generator or Expected link variable (GE)" and "Generator of Actual bucket trajectory (CA)" are put forward. Finally, based on the current technology and existing techniques of WD-400 Mechanical Forward Excavator (MFE), the automatic system of excavating process composed of two relatively indepodent sub-systems is designed with simple but practical structure’ According to the computer simulation, this control system has high tracking precision to the desired trajectory and good adaptive capacity to the load disturbance.
基金Supported by the National Natural Science Foundation of China(61175090,61703249)Shandong Provincial Natural Science Foundation,China(ZR2017MF045)
文摘To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction under the direct torque control system of brushless DC motor. First,the arm joint of the humanoid robot is modelled. Then the speed controller model and the influence of the initial value of the integral element on the system are analyzed. On the basis of the traditional antiwindup controller,an integral state estimator is set up. Under the condition of different load torques and the given speed,the integral steady-state value is estimated. Therefore the accumulation of the speed error terminates when the integrator reaches saturation. Then the predicted integral steady-state value is used as the initial value of the regulator to enter the linear region to make the system achieve the purpose of anti-windup. The simulation results demonstrate that the control strategy for the humanoid robot arm joint based on integral state prediction can play the role of anti-windup and suppress the overshoot of the system effectively. The system has a good dynamic performance.
基金Supported by the National Natural Science Foundation of China (61104022, 10971202)the Science and Technology Research Key Program of Henan Educational Committee(12A120009)
文摘A new fault-tolerant control scheme is proposed for a nonlinear collaborative system that contains two robot subsystems. When fault occurs in one subsystem, the fault-free subsystem is used to compensate the fault influence of the faulty one on the whole collaborative system. When the faulty subsystem could not repair itself or the repair process needs a long time, the controller of the fault-free subsystem is reconfigured using the fault diagnosis information and other measured infor- mation, leading to the fault tolerant control of the robot collaborative system. Simulations of fault tolerant control for the robot collaborative system show the effectiveness of the proposed method.
文摘This paper describes the basic structure and design and operation principle of the hydraulic drive and control system with two pumps and two circuits. The manipulator of the cone collecting robot designed is full driven by hydraulic, which has five freedoms. The computer and electrohydraulic proportion velocity regulating valve were installed to realize open loop serve control for reducing cost and easy application.
文摘This paper deals with control system design and implementation problems encountered in multiple robot systems. The methodology developed is depicted by a set of coordination mechanisms using hierarchical net structures and their accompanying rules. With the net models, the hierarchical and distributed control system is designed for an assembly task. Synchronization commands allow coordination of the movements of the robots. The net models make concurrency of the movements of the robots transparent to users. The net based machine controller executes robot motion control through the communication with the external robot controller using the command/response concept. Sensory signals indicating the change of state of robots are used to trigger or initiate tasks. Simultaneous movement of the robots is obtained by creating different background threads running in parallel under Windows OS. The multilevel hierarchical control system can be consistently constructed using net models.
文摘In response to the frequent safety accidents of industrial robots, this paper designs and implements a safety detection system for robot control. It can perform real-time security detection of robot operations on industrial production lines to improve the security and reliability of robot control systems. This paper designs and implements a robot control system based Snort-BASE for real-time online detection of DoS attacks. The system uses a six-degree-of-freedom robotic arm as an example, uses Snort to record the network communication data of the robot arm control system in real time, and filters the network traffic through self-defined rules, and then uses the BASE analysis platform to achieve security analysis of the network traffic. The solution verifies the effectiveness of online real-time detection of attacks and visualisation of attack records by designing simulated robotic arm and real robotic arm attack experiments respectively, thus achieving the security of network communication of the robot remote control system.
文摘Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controller that based on Fuzzy and PID control method. The results of simulation show that the dynamic and steady performances of the intelligent controller are better than that of single PID or Fuzzy controller. This paper has made a detail theoretical analysis of the constitution design and real-time controlled software and brought up the design and fulfillment method of multi-task real-time control software of high precisely and numerically controlled welding positioner, which has a good result in practice.
文摘This paper introduces a new control strategy for heterogeneous multi-robots systems dedicated to industrial logistic setups. This control strategy is based on both distributed intelligence and machine learning and involves three parts: the rigid formation controller, the perception system and the path planner. Our controller is event-based and thus its control-coordination strategy can be self-adaptive and applied to real dynamic environment. During the navigating process, the multi-robots system derives the environment model, performs the path planning process that guaranties both the transportation constraints and the obstacle avoidance. For the validation, both simulation and real robot experiments are performed. The results show that the developed control strategy can be well used for realistic logistics applications.
文摘The large scale and complex manufacturing systems have a hierarchical structure where a system is composed several lines with some stations and each station also have several machines and so on. In such a hierarchical structure, the controllers are geographically distributed according to their physical structure. So it is desirable to realize the hierarchical and distributed control. In this paper, a methodology is presented using Petri nets for hierarchical and distributed control. The Petri net representation of discrete event manufacturing processes is decomposed and distributed into the machine controllers, which are coordinated through communication between the coordinator and machine controllers so that the decomposed transitions fire at the same time. Implementation of a hierarchical and distributed control system is described for an example robotic manufacturing system. The demonstrations show that the proposed system can be used as an effective tool for consistent modeling and control of large and complex manufacturing systems.
文摘In this paper, we present a vision guided robotic ball-beam balancing control system, consisting of a robot manipulator (actuator), a ball-beam system (plant) and a machine vision system (feedback). The machine vision system feedbacks real-time beam angle and ball position data at a speed of 50 frames per second. Based on feedback data, the end-effector of a robot manipulator is driven to control the ball position by maneuvering of the inclination angle of the ball-beam system. The overall control system is implemented with two FPGA chips, one for machine vision processing, and one for robot joints servo PID controllers as well as ball position PD controller. Experiments are performed on a 5-axes robot manipulator to validate the proposed ball beam balancing control system.