The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized...The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized. The method of computing pseudoinverse which needs too many complicated calculation can be avoided. Then the calculation and control of robots are simplified. At the same time system robustness/fault tolerance is achieved.展开更多
A certain number of considerations should be taken into account in the dynamic control of robot manipulators as highly complex non-linear systems.In this article,we provide a detailed presentation of the mechanical an...A certain number of considerations should be taken into account in the dynamic control of robot manipulators as highly complex non-linear systems.In this article,we provide a detailed presentation of the mechanical and electrical impli- cations of robots equipped with DC motor actuators.This model takes into account all non-linear aspects of the system.Then,we develop computational algorithms for optimal control based on dynamic programming.The robot's trajectory must be predefined,but performance criteria and constraints applying to the system are not limited and we may adapt them freely to the robot and the task being studied.As an example,a manipulator arm with 3 degrees of freedom is analyzed.展开更多
For the situation of multiple cooperating manipulators handling a single object,an equilibrium equation is presented in which the manipulator dynamics and control forces/torques are taken into account,and a expression...For the situation of multiple cooperating manipulators handling a single object,an equilibrium equation is presented in which the manipulator dynamics and control forces/torques are taken into account,and a expression is derived to allow the optimal dynamic load distribution of the combined system can be made.展开更多
Based on a continuous piecewise-differentiable increasing functions vector, a class of robust nonlinear PID (RN-PID) controllers is proposed for setpoint control with uncertain Jacobian matrix. Globally asymptotic sta...Based on a continuous piecewise-differentiable increasing functions vector, a class of robust nonlinear PID (RN-PID) controllers is proposed for setpoint control with uncertain Jacobian matrix. Globally asymptotic stability is guaranteed and only position and joint velocity measurements are required. And stability problem arising from integral action and integrator windup, are consequently resolved. Furthermore, RN-PID controllers can be of effective alternative for anti-integrator-wind-up, the control performance would not be very bad in the presence of rough parameter tuning.展开更多
Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main cat...Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main categories: optimum traveling time and optimum mechanical energy of the actuators. The current trajectory planning algorithms are designed based on one of the above two performance indexes. So far, there have been few planning algorithms designed to satisfy two performance indexes simultaneously. On the other hand, some deficiencies arise in the existing integrated optimi2ation algorithms of trajectory planning. In order to overcome those deficiencies, the integrated optimization algorithms of trajectory planning are presented based on the complete analysis for trajectory planning of robot manipulators. In the algorithm, two object functions are designed based on the specific weight coefficient method and ' ideal point strategy. Moreover, based on the features of optimization problem, the intensified evolutionary programming is proposed to solve the corresponding optimization model. Especially, for the Stanford Robot,the high-quality solutions are found at a lower cost.展开更多
A simple robust scheme of parallel force/position control is proposed in this paper to deal with two problems for non-planar constraint surface and nonlinear mechanical feature of environment: i) uncertainties in en...A simple robust scheme of parallel force/position control is proposed in this paper to deal with two problems for non-planar constraint surface and nonlinear mechanical feature of environment: i) uncertainties in environment that are usually not available or difficult to be determined in most practical situations; ii) stability problem or/and integrator windup due to the integration of force error in the force dominance rule in parallel force/position control. It shows that this robust scheme is a good alternative for anti-windup. In the presence of environment uncertainties, global asymptotic stability of the resulting closed-loop system is guaranteed; it environment with complex characteristics. Finally, numerical robot manipulator. also shows robustness of the proposed controller to uncertain simulation verifies results via contact task of a two rigid-links展开更多
In this paper,Support Vector Machine(SVM)and K-Nearest Neighbor(KNN)based methods are to be applied on fault diagnosis in a robot manipulator.A comparative study between the two classifiers in terms of successfully det...In this paper,Support Vector Machine(SVM)and K-Nearest Neighbor(KNN)based methods are to be applied on fault diagnosis in a robot manipulator.A comparative study between the two classifiers in terms of successfully detecting and isolating the seven classes of sensor faults is considered in this work.For both classifiers,the torque,the position and the speed of the manipulator have been employed as the input vector.However,it is to mention that a large database is needed and used for the training and testing phases.The SVM method used in this paper is based on the Gaussian kernel with the parametersγand the penalty margin parameter“C”,which were adjusted via the PSO algorithm to achieve a maximum accuracy diagnosis.Simulations were carried out on the model of a Selective Compliance Assembly Robot Arm(SCARA)robot manipulator,and the results showed that the Particle Swarm Optimization(PSO)increased the per-formance of the SVM algorithm with the 96.95%accuracy while the KNN algo-rithm achieved a correlation up to 94.62%.These results showed that the SVM algorithm with PSO was more precise than the KNN algorithm when was used in fault diagnosis on a robot manipulator.展开更多
The increasing demand on robotic system performance leads to the use of advanced con- trol strategies. This paper proposes a method of nonlinear feedback control introducing fuzzy infer- ence into model-following adap...The increasing demand on robotic system performance leads to the use of advanced con- trol strategies. This paper proposes a method of nonlinear feedback control introducing fuzzy infer- ence into model-following adaptive control for the nonlinear robot manipulator systems. The fuzzy inference is introduced to treat the nonlinearities of the control systems. Furthermore, the stability of the system is discussed by the fuzzy stability theory based on the Lyapunov's direct method. In the closed loop, the robotic system asymptotically converge to the reference trajectory with a pre- scribed transient response.展开更多
This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th...This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.展开更多
A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to ge...A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy.展开更多
This paper proposes an approach to evaluate the performance of robot manipulator from the view of energy analysis. Based on the dynamics analysis of the manipulator, the Energy Distribution Index (EDI) is defined to...This paper proposes an approach to evaluate the performance of robot manipulator from the view of energy analysis. Based on the dynamics analysis of the manipulator, the Energy Distribution Index (EDI) is defined to depict the energy increment contribution of its subsystem to the whole manipulator. EDI is applied to the evaluation of the buffeting capability of the manipulator working under unpredictable and heavy external loads. A series of buffering indices, the Static Buffering Index (SBI), Kineto-Static Buffering Index (KBI), Dynamic Buffering Index (DBI), and Global Buffering Index (GBI) are proposed to evaluate the buffering capability under different conditions. In order to acquire higher calculation accuracy, the general stiffness mapping of manipulators considering the actuator stiffness, inertia of the manipulator, damping, as well as elasticity of linkages is developed. Three different robot manipulators are studied as evaluation cases, in which the buffering structures are mechanism with variable topology, linear springs, and the elasticity of linkages respectively. The case studies show that the indices based on energy analysis have the advantage of coordinate free and are effective for buffering capability evaluation.展开更多
A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task sp...A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task space. It provides a joint velocity reference signal to the inner one. The inner loop implements a velocity servo loop at the robot joint level. A radial basis function network (RBFN) is integrated with proportional-integral (PI) control to construct a velocity tracking control scheme for the inner loop. Finally, a prototype technology based control system is designed for a robotic manipulator. The proposed control scheme is applied to the robotic manipulator. Experimental results confirm the validity of the proposed control scheme by comparing it with other control strategies.展开更多
Purpose-The purpose of this paper is to develop sliding mode control with linear and nonlinear manifolds in discrete-time domain for robot manipulators.Design/methodology/approach–First,a discrete linear sliding mode...Purpose-The purpose of this paper is to develop sliding mode control with linear and nonlinear manifolds in discrete-time domain for robot manipulators.Design/methodology/approach–First,a discrete linear sliding mode controller is designed to an n-link robot based on Gao’s reaching law.In the second step,a discrete terminal sliding mode controller is developed to design a finite time and high precision controller.The stability analysis of both controllers is presented in the presence of model uncertainties and external disturbances.Finally,sampling time effects on the continuous-time system outputs and sliding surfaces are discussed.Findings–Computer simulations on a three-link SCARA robot show that the proposed controllers are robust against model uncertainties and external disturbance.It was also shown that the sampling time has important effects on the closed loop system stability and convergence.Practical implications-The proposed controllers are low cost and easily implemented in practice in comparison with continuous-time ones.Originality/value-The novelty associated with this paper is the development of an approach to finite time and robust control of n-link robot manipulators in discrete-time domain.Also,obtaining an upper bound for the sampling time is another contribution of this work.展开更多
A simple analytical model method for dynamics of robotic manipulators is proposed.Problem of deriving model matrix elements is transformed into problem of solving for driving forceand driving torque under specified co...A simple analytical model method for dynamics of robotic manipulators is proposed.Problem of deriving model matrix elements is transformed into problem of solving for driving forceand driving torque under specified condition by recursive dynamic equations. Expressions of reaction force in arbitrary joint in numeric-symbolic form are also derived. The properties of modelmatrices are given. Corresponding software which can recognize and manipulate symbols is developed and can be used to generate model and real-time code of robotic dynamics.展开更多
Conventional robotic manipulators consist of touch and vision sensors in order to pick and place differently shaped objects.Due to the technology development and degrading sensors over a long period,the stereo vision ...Conventional robotic manipulators consist of touch and vision sensors in order to pick and place differently shaped objects.Due to the technology development and degrading sensors over a long period,the stereo vision technique has become a promising alternative.In this study,a low-cost stereo vision-based system,and a gripper to be placed at the end of the robot arm(Fanuc M10 iA/12)are developed for position and orientation estimation of robotic manipulators to pick and place different shaped objects.The stereo vision system developed in this research is used to estimate the position(X,Y,Z),orientation(P_(y))of the Center of Volume of four standard objects(cube,cuboid,cylinder,and sphere)whereas the robot arm with the gripper is used to mechanically pick and place the objects.The stereo vision system is placed on the movable robot arm,and it consists of two cameras to capture two 2D views of a stationary object to derive 3D depth information in 3D space.Moreover,a graphical user interface is developed to train a linear regression model,live predict the coordinates of the objects,and check the accuracy of the predicted data.The graphical user interface can also send predicted coordinates and angles to the gripper and the robot arm.The project is facilitated with python programming language modules and image processing techniques.Identification of the stationary object and estimation of its coordinates is done using image processing techniques.The final product can be identified as a device that converts conventional robot arms without an image processing vision system into a highly precise and accurate robot arm with an image processing vision system.Experimental studies are performed to test the efficiency and effectiveness of used techniques and the gripper prototype.Necessary actions are taken to minimize the errors in position and orientation estimation.In addition,as a future implementation,an embedded system will be developed with a user-friendly software interface to install the vision system into the Fanuc M10 iA/12 robot arm and will upgrade the system to a device that can be implemented with any kind of customized robot arms available in the industry.展开更多
A novel unified method for computing the dynamic load carrying capacity(DLCC) of multiple cooperating robotic manipulators is developed.In this method,the kinematic constraints and the governing dynamic equations of ...A novel unified method for computing the dynamic load carrying capacity(DLCC) of multiple cooperating robotic manipulators is developed.In this method,the kinematic constraints and the governing dynamic equations of the multiple robot system are formulated in the joint space by using the method of transference of dependence from one set of generalized coordinates to another,and the virtual work principle,which includes the readily available dynamics and joint torques of individual manipulators,and the dynamic of payload.Based on this dynamic model,the upper limit of the DLCC at any points on a given trajectory is obtained by solving a small size linear programming problem.This method is conceptually straightforward,and it is applicable also to the cases of multi fingered robot hands and multi legged walking machines.展开更多
A fuzzy adaptive control method is proposed for a flexible robot manipulator. Due to the structure characteristics of the flexible manipulator, the vibration modes must be controlled to realize the high-precision tip ...A fuzzy adaptive control method is proposed for a flexible robot manipulator. Due to the structure characteristics of the flexible manipulator, the vibration modes must be controlled to realize the high-precision tip position. The Lagrangian principle is utilized to model the dynamic function of the single-degree flexible manipulator incorporating the assumed modes method. Simulation results of the fuzzy adaptive control method in the location control and the trajectory tracking with different tip disturbances are presented and compared with the results of the classic PD control. It shows that the controller can obtain the stable and robust performance.展开更多
The mechanism type plays a decisive role in the mechanical performance of robotic manipulators. Feasible mechanism types can be obtained by applying appropriate type synthesis theory, but there is still a lack of effe...The mechanism type plays a decisive role in the mechanical performance of robotic manipulators. Feasible mechanism types can be obtained by applying appropriate type synthesis theory, but there is still a lack of effective and efficient methods for the optimum selection among different types of mechanism candidates. This paper presents a new strategy for the purpose of optimum mechanism type selection based on the modified particle swarm optimization method. The concept of sub-swarm is introduced to represent the different mechanisms generated by the type synthesis, and a competitive mechanism is employed between the sub-swarms to reassign their population size according to the relative performances of the mechanism candidates to implement the optimization. Combining with a modular modeling approach for fast calculation of the performance index of the potential candidates, the proposed method is applied to determine the optimum mechanism type among the potential candidates for the desired manipulator. The effectiveness and efficiency of the proposed method is demonstrated through a case study on the optimum selection of mechanism type of a heavy manipulator where six feasible candidates are considered with force capability as the specific performance index. The optimization result shows that the fitness of the optimum mechanism type for the considered heavy manipulator can be up to 0.578 5. This research provides the instruction in optimum selection of mechanism types for robotic manipulators.展开更多
We design a regulation-triggered adaptive controller for robot manipulators to efficiently estimate unknown parameters and to achieve asymptotic stability in the presence of coupled uncertainties.Robot manipulators ar...We design a regulation-triggered adaptive controller for robot manipulators to efficiently estimate unknown parameters and to achieve asymptotic stability in the presence of coupled uncertainties.Robot manipulators are widely used in telemanipulation systems where they are subject to model and environmental uncertainties.Using conventional control algorithms on such systems can cause not only poor control performance,but also expensive computational costs and catastrophic instabilities.Therefore,system uncertainties need to be estimated through designing a computationally efficient adaptive control law.We focus on robot manipulators as an example of a highly nonlinear system.As a case study,a 2-DOF manipulator subject to four parametric uncertainties is investigated.First,the dynamic equations of the manipulator are derived,and the corresponding regressor matrix is constructed for the unknown parameters.For a general nonlinear system,a theorem is presented to guarantee the asymptotic stability of the system and the convergence of parameters'estimations.Finally,simulation results are discussed for a two-link manipulator,and the performance of the proposed scheme is thoroughly evaluated.展开更多
It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on l...It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on line algorithm to real timely estimate the tangent and the normal vectors of the constraint surface based on the measured contact force under the consideration of frictional force. A fuzzy synthesis policy is proposed to coordinate the conflict between the compliant force control and the stiff position control. An experimental study on an AdeptThree, a SCARA type robotic manipulator, is conducted. The experimental results show that the policy presented in the paper is effective.展开更多
文摘The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized. The method of computing pseudoinverse which needs too many complicated calculation can be avoided. Then the calculation and control of robots are simplified. At the same time system robustness/fault tolerance is achieved.
文摘A certain number of considerations should be taken into account in the dynamic control of robot manipulators as highly complex non-linear systems.In this article,we provide a detailed presentation of the mechanical and electrical impli- cations of robots equipped with DC motor actuators.This model takes into account all non-linear aspects of the system.Then,we develop computational algorithms for optimal control based on dynamic programming.The robot's trajectory must be predefined,but performance criteria and constraints applying to the system are not limited and we may adapt them freely to the robot and the task being studied.As an example,a manipulator arm with 3 degrees of freedom is analyzed.
文摘For the situation of multiple cooperating manipulators handling a single object,an equilibrium equation is presented in which the manipulator dynamics and control forces/torques are taken into account,and a expression is derived to allow the optimal dynamic load distribution of the combined system can be made.
基金This work was supported by the Doctor Foundation of China(No.2003033306)
文摘Based on a continuous piecewise-differentiable increasing functions vector, a class of robust nonlinear PID (RN-PID) controllers is proposed for setpoint control with uncertain Jacobian matrix. Globally asymptotic stability is guaranteed and only position and joint velocity measurements are required. And stability problem arising from integral action and integrator windup, are consequently resolved. Furthermore, RN-PID controllers can be of effective alternative for anti-integrator-wind-up, the control performance would not be very bad in the presence of rough parameter tuning.
基金This work was supported in part by National Natural Science Foundation of China (No. 69975003) and Foundation for Dissertation of Ph. D. Candidate of Central South University (No.030618) .
文摘Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main categories: optimum traveling time and optimum mechanical energy of the actuators. The current trajectory planning algorithms are designed based on one of the above two performance indexes. So far, there have been few planning algorithms designed to satisfy two performance indexes simultaneously. On the other hand, some deficiencies arise in the existing integrated optimi2ation algorithms of trajectory planning. In order to overcome those deficiencies, the integrated optimization algorithms of trajectory planning are presented based on the complete analysis for trajectory planning of robot manipulators. In the algorithm, two object functions are designed based on the specific weight coefficient method and ' ideal point strategy. Moreover, based on the features of optimization problem, the intensified evolutionary programming is proposed to solve the corresponding optimization model. Especially, for the Stanford Robot,the high-quality solutions are found at a lower cost.
文摘A simple robust scheme of parallel force/position control is proposed in this paper to deal with two problems for non-planar constraint surface and nonlinear mechanical feature of environment: i) uncertainties in environment that are usually not available or difficult to be determined in most practical situations; ii) stability problem or/and integrator windup due to the integration of force error in the force dominance rule in parallel force/position control. It shows that this robust scheme is a good alternative for anti-windup. In the presence of environment uncertainties, global asymptotic stability of the resulting closed-loop system is guaranteed; it environment with complex characteristics. Finally, numerical robot manipulator. also shows robustness of the proposed controller to uncertain simulation verifies results via contact task of a two rigid-links
基金supported by Taif University Researchers Supporting Project(Number TURSP-2020/122),Taif University,Taif,Saudi Arabia.
文摘In this paper,Support Vector Machine(SVM)and K-Nearest Neighbor(KNN)based methods are to be applied on fault diagnosis in a robot manipulator.A comparative study between the two classifiers in terms of successfully detecting and isolating the seven classes of sensor faults is considered in this work.For both classifiers,the torque,the position and the speed of the manipulator have been employed as the input vector.However,it is to mention that a large database is needed and used for the training and testing phases.The SVM method used in this paper is based on the Gaussian kernel with the parametersγand the penalty margin parameter“C”,which were adjusted via the PSO algorithm to achieve a maximum accuracy diagnosis.Simulations were carried out on the model of a Selective Compliance Assembly Robot Arm(SCARA)robot manipulator,and the results showed that the Particle Swarm Optimization(PSO)increased the per-formance of the SVM algorithm with the 96.95%accuracy while the KNN algo-rithm achieved a correlation up to 94.62%.These results showed that the SVM algorithm with PSO was more precise than the KNN algorithm when was used in fault diagnosis on a robot manipulator.
文摘The increasing demand on robotic system performance leads to the use of advanced con- trol strategies. This paper proposes a method of nonlinear feedback control introducing fuzzy infer- ence into model-following adaptive control for the nonlinear robot manipulator systems. The fuzzy inference is introduced to treat the nonlinearities of the control systems. Furthermore, the stability of the system is discussed by the fuzzy stability theory based on the Lyapunov's direct method. In the closed loop, the robotic system asymptotically converge to the reference trajectory with a pre- scribed transient response.
基金partially supported by the National Natural Science Foundation of China (62322315,61873237)Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(LR22F030003)+2 种基金the National Key Rearch and Development Funding(2018YFB1403702)the Key Rearch and Development Programs of Zhejiang Province (2023C01224)Major Project of Science and Technology Innovation in Ningbo City (2019B1003)。
文摘This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.
文摘A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy.
基金supported by the National Natural Science Foundation of China(Grant No.51075259,50821003)the National Basic Research Program of China("973"Program)(Grant No.2006CB705400)
文摘This paper proposes an approach to evaluate the performance of robot manipulator from the view of energy analysis. Based on the dynamics analysis of the manipulator, the Energy Distribution Index (EDI) is defined to depict the energy increment contribution of its subsystem to the whole manipulator. EDI is applied to the evaluation of the buffeting capability of the manipulator working under unpredictable and heavy external loads. A series of buffering indices, the Static Buffering Index (SBI), Kineto-Static Buffering Index (KBI), Dynamic Buffering Index (DBI), and Global Buffering Index (GBI) are proposed to evaluate the buffering capability under different conditions. In order to acquire higher calculation accuracy, the general stiffness mapping of manipulators considering the actuator stiffness, inertia of the manipulator, damping, as well as elasticity of linkages is developed. Three different robot manipulators are studied as evaluation cases, in which the buffering structures are mechanism with variable topology, linear springs, and the elasticity of linkages respectively. The case studies show that the indices based on energy analysis have the advantage of coordinate free and are effective for buffering capability evaluation.
基金supported by the National Basic Research Program of China (973 Program) (No.2009CB320601)National Natural Science Foundationof China (No.60534010)+1 种基金the Funds for Creative Research Groups of China (No.60521003)the 111 Project (No.B08015)
文摘A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task space. It provides a joint velocity reference signal to the inner one. The inner loop implements a velocity servo loop at the robot joint level. A radial basis function network (RBFN) is integrated with proportional-integral (PI) control to construct a velocity tracking control scheme for the inner loop. Finally, a prototype technology based control system is designed for a robotic manipulator. The proposed control scheme is applied to the robotic manipulator. Experimental results confirm the validity of the proposed control scheme by comparing it with other control strategies.
文摘Purpose-The purpose of this paper is to develop sliding mode control with linear and nonlinear manifolds in discrete-time domain for robot manipulators.Design/methodology/approach–First,a discrete linear sliding mode controller is designed to an n-link robot based on Gao’s reaching law.In the second step,a discrete terminal sliding mode controller is developed to design a finite time and high precision controller.The stability analysis of both controllers is presented in the presence of model uncertainties and external disturbances.Finally,sampling time effects on the continuous-time system outputs and sliding surfaces are discussed.Findings–Computer simulations on a three-link SCARA robot show that the proposed controllers are robust against model uncertainties and external disturbance.It was also shown that the sampling time has important effects on the closed loop system stability and convergence.Practical implications-The proposed controllers are low cost and easily implemented in practice in comparison with continuous-time ones.Originality/value-The novelty associated with this paper is the development of an approach to finite time and robust control of n-link robot manipulators in discrete-time domain.Also,obtaining an upper bound for the sampling time is another contribution of this work.
文摘A simple analytical model method for dynamics of robotic manipulators is proposed.Problem of deriving model matrix elements is transformed into problem of solving for driving forceand driving torque under specified condition by recursive dynamic equations. Expressions of reaction force in arbitrary joint in numeric-symbolic form are also derived. The properties of modelmatrices are given. Corresponding software which can recognize and manipulate symbols is developed and can be used to generate model and real-time code of robotic dynamics.
文摘Conventional robotic manipulators consist of touch and vision sensors in order to pick and place differently shaped objects.Due to the technology development and degrading sensors over a long period,the stereo vision technique has become a promising alternative.In this study,a low-cost stereo vision-based system,and a gripper to be placed at the end of the robot arm(Fanuc M10 iA/12)are developed for position and orientation estimation of robotic manipulators to pick and place different shaped objects.The stereo vision system developed in this research is used to estimate the position(X,Y,Z),orientation(P_(y))of the Center of Volume of four standard objects(cube,cuboid,cylinder,and sphere)whereas the robot arm with the gripper is used to mechanically pick and place the objects.The stereo vision system is placed on the movable robot arm,and it consists of two cameras to capture two 2D views of a stationary object to derive 3D depth information in 3D space.Moreover,a graphical user interface is developed to train a linear regression model,live predict the coordinates of the objects,and check the accuracy of the predicted data.The graphical user interface can also send predicted coordinates and angles to the gripper and the robot arm.The project is facilitated with python programming language modules and image processing techniques.Identification of the stationary object and estimation of its coordinates is done using image processing techniques.The final product can be identified as a device that converts conventional robot arms without an image processing vision system into a highly precise and accurate robot arm with an image processing vision system.Experimental studies are performed to test the efficiency and effectiveness of used techniques and the gripper prototype.Necessary actions are taken to minimize the errors in position and orientation estimation.In addition,as a future implementation,an embedded system will be developed with a user-friendly software interface to install the vision system into the Fanuc M10 iA/12 robot arm and will upgrade the system to a device that can be implemented with any kind of customized robot arms available in the industry.
文摘A novel unified method for computing the dynamic load carrying capacity(DLCC) of multiple cooperating robotic manipulators is developed.In this method,the kinematic constraints and the governing dynamic equations of the multiple robot system are formulated in the joint space by using the method of transference of dependence from one set of generalized coordinates to another,and the virtual work principle,which includes the readily available dynamics and joint torques of individual manipulators,and the dynamic of payload.Based on this dynamic model,the upper limit of the DLCC at any points on a given trajectory is obtained by solving a small size linear programming problem.This method is conceptually straightforward,and it is applicable also to the cases of multi fingered robot hands and multi legged walking machines.
文摘A fuzzy adaptive control method is proposed for a flexible robot manipulator. Due to the structure characteristics of the flexible manipulator, the vibration modes must be controlled to realize the high-precision tip position. The Lagrangian principle is utilized to model the dynamic function of the single-degree flexible manipulator incorporating the assumed modes method. Simulation results of the fuzzy adaptive control method in the location control and the trajectory tracking with different tip disturbances are presented and compared with the results of the classic PD control. It shows that the controller can obtain the stable and robust performance.
基金supported by National Natural Science Foundation of China (Grant No. 51075259)Program for New Century Excellent Talents in University of Ministry of Education, China (Grant No. NCET-10-0579)+1 种基金National Basic Research Program of China (973 program, Grant No.2006CB705407)Key Technologies R&D Program of Shanghai,China (Grant No. 10111100203)
文摘The mechanism type plays a decisive role in the mechanical performance of robotic manipulators. Feasible mechanism types can be obtained by applying appropriate type synthesis theory, but there is still a lack of effective and efficient methods for the optimum selection among different types of mechanism candidates. This paper presents a new strategy for the purpose of optimum mechanism type selection based on the modified particle swarm optimization method. The concept of sub-swarm is introduced to represent the different mechanisms generated by the type synthesis, and a competitive mechanism is employed between the sub-swarms to reassign their population size according to the relative performances of the mechanism candidates to implement the optimization. Combining with a modular modeling approach for fast calculation of the performance index of the potential candidates, the proposed method is applied to determine the optimum mechanism type among the potential candidates for the desired manipulator. The effectiveness and efficiency of the proposed method is demonstrated through a case study on the optimum selection of mechanism type of a heavy manipulator where six feasible candidates are considered with force capability as the specific performance index. The optimization result shows that the fitness of the optimum mechanism type for the considered heavy manipulator can be up to 0.578 5. This research provides the instruction in optimum selection of mechanism types for robotic manipulators.
基金supported by the National Science Foundation under Award#1823951-1823983。
文摘We design a regulation-triggered adaptive controller for robot manipulators to efficiently estimate unknown parameters and to achieve asymptotic stability in the presence of coupled uncertainties.Robot manipulators are widely used in telemanipulation systems where they are subject to model and environmental uncertainties.Using conventional control algorithms on such systems can cause not only poor control performance,but also expensive computational costs and catastrophic instabilities.Therefore,system uncertainties need to be estimated through designing a computationally efficient adaptive control law.We focus on robot manipulators as an example of a highly nonlinear system.As a case study,a 2-DOF manipulator subject to four parametric uncertainties is investigated.First,the dynamic equations of the manipulator are derived,and the corresponding regressor matrix is constructed for the unknown parameters.For a general nonlinear system,a theorem is presented to guarantee the asymptotic stability of the system and the convergence of parameters'estimations.Finally,simulation results are discussed for a two-link manipulator,and the performance of the proposed scheme is thoroughly evaluated.
文摘It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on line algorithm to real timely estimate the tangent and the normal vectors of the constraint surface based on the measured contact force under the consideration of frictional force. A fuzzy synthesis policy is proposed to coordinate the conflict between the compliant force control and the stiff position control. An experimental study on an AdeptThree, a SCARA type robotic manipulator, is conducted. The experimental results show that the policy presented in the paper is effective.