As an important attribute of robots, safety is involved in each link of the full life cycle of robots, including the design, manufacturing, operation and maintenance. The present study on robot safety is a systematic ...As an important attribute of robots, safety is involved in each link of the full life cycle of robots, including the design, manufacturing, operation and maintenance. The present study on robot safety is a systematic project. Traditionally, robot safety is defined as follows: robots should not collide with humans, or robots should not harm humans when they collide. Based on this definition of robot safety, researchers have proposed ex ante and ex post safety standards and safety strategies and used the risk index and risk level as the evaluation indexes for safety methods. A massage robot realizes its massage therapy function through applying a rhythmic force on the massage object. Therefore, the traditional definition of safety, safety strategies, and safety realization methods cannot satisfy the function and safety requirements of massage robots. Based on the descriptions of the environment of massage robots and the tasks of massage robots, the present study analyzes the safety requirements of massage robots; analyzes the potential safety dangers of massage robots using the fault tree tool; proposes an error monitoring-based intelligent safety system for massage robots through monitoring and evaluating potential safety danger states, as well as decision making based on potential safety danger states; and verifies the feasibility of the intelligent safety system through an experiment.展开更多
With the increasing number of human-robot interaction applications, robot control characteristics and their effects on safety as well as performance should be taken account into the robot control system. In this paper...With the increasing number of human-robot interaction applications, robot control characteristics and their effects on safety as well as performance should be taken account into the robot control system. In this paper, a position and torque switching con- trol method was proposed to improve the robot safety and performance, when robots and humans work in the same space. The switch- ing control method includes two modes, the position control mode using a proportion-integral (PI) algorithm, and the torque control mode using sliding mode control (SMC) algorithm for eliminating swing. Under the normal condition, the robot works in position con- trol mode for trajectory tracking with quick response. Once the robot and human collide, the robot will switch to torque control mode immediately, and the impact force will be restricted within a safe range. When the robot and human detach, the robot will resume to po- sition control mode automatically. Moreover, for a better performance, the joint torque is detected fl'om direct-current (DC) motor's cur- rent rather than the torque sensor. The experiment results show that the proposed approach is effective and feasible.展开更多
This study traces the development of dexterous hand research and proposes a novel antagonistic variable stiffness dexterous finger mechanism to improve the safety of dexterous hand in unpredictable environments,such a...This study traces the development of dexterous hand research and proposes a novel antagonistic variable stiffness dexterous finger mechanism to improve the safety of dexterous hand in unpredictable environments,such as unstructured or man-made operational errors through comprehensive consideration of cost,accuracy,manufacturing,and application.Based on the concept of mechanical passive compliance,which is widely implemented in robots for interactions,a finger is dedicated to improving mechanical robustness.The finger mechanism not only achieves passive compliance against physical impacts,but also implements the variable stiffness actuator principle in a compact finger without adding supererogatory actuators.It achieves finger stiffness adjustability according to the biologically inspired stiffness variation principle of discarding some mobilities to adjust stiffness.The mechanical design of the finger and its stiffness adjusting methods are elaborated.The stiffness characteristics of the finger joint and the actuation unit are analyzed.Experimental results of the finger joint stiffness identification and finger impact tests under different finger stiffness presets are provided to verify the validity of the model.Fingers have been experimentally proven to be robust against physical impacts.Moreover,the experimental part verifies that fingers have good power,grasping,and manipulation performance.展开更多
基金Projects(2012AA041601,2015AA0400614)supported by the Hi-Tech Research and Development Program of ChinaProject(2012BAI14B02)supported by the National Key Technology R&D Program of China+3 种基金Project(61333019)supported by the National Natural Science Foundation of ChinaProject(SKLRS-2013-MS-09)supported by the Open Fund of State Key laboratory of Robotics and System,ChinaProject(YWF-14-JXXY-001)supported by the Scientific Research Business Fund,ChinaProject(2014ZX04013011)supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China
文摘As an important attribute of robots, safety is involved in each link of the full life cycle of robots, including the design, manufacturing, operation and maintenance. The present study on robot safety is a systematic project. Traditionally, robot safety is defined as follows: robots should not collide with humans, or robots should not harm humans when they collide. Based on this definition of robot safety, researchers have proposed ex ante and ex post safety standards and safety strategies and used the risk index and risk level as the evaluation indexes for safety methods. A massage robot realizes its massage therapy function through applying a rhythmic force on the massage object. Therefore, the traditional definition of safety, safety strategies, and safety realization methods cannot satisfy the function and safety requirements of massage robots. Based on the descriptions of the environment of massage robots and the tasks of massage robots, the present study analyzes the safety requirements of massage robots; analyzes the potential safety dangers of massage robots using the fault tree tool; proposes an error monitoring-based intelligent safety system for massage robots through monitoring and evaluating potential safety danger states, as well as decision making based on potential safety danger states; and verifies the feasibility of the intelligent safety system through an experiment.
基金supported by National Natural Science Foundation of China(Nos.51175084,51575111 and 51605093)Fujian Province Natural Science Foundation(No.2015J05121)Fuzhou University-Enterprise Cooperation Project(No.2015H6012)
文摘With the increasing number of human-robot interaction applications, robot control characteristics and their effects on safety as well as performance should be taken account into the robot control system. In this paper, a position and torque switching con- trol method was proposed to improve the robot safety and performance, when robots and humans work in the same space. The switch- ing control method includes two modes, the position control mode using a proportion-integral (PI) algorithm, and the torque control mode using sliding mode control (SMC) algorithm for eliminating swing. Under the normal condition, the robot works in position con- trol mode for trajectory tracking with quick response. Once the robot and human collide, the robot will switch to torque control mode immediately, and the impact force will be restricted within a safe range. When the robot and human detach, the robot will resume to po- sition control mode automatically. Moreover, for a better performance, the joint torque is detected fl'om direct-current (DC) motor's cur- rent rather than the torque sensor. The experiment results show that the proposed approach is effective and feasible.
基金This work was supported by the National Key R&D Program of China(Grant No.2017YFB1300400)the Major Research Plan of the National Natural Science Foundation of China(Grant No.91848202).
文摘This study traces the development of dexterous hand research and proposes a novel antagonistic variable stiffness dexterous finger mechanism to improve the safety of dexterous hand in unpredictable environments,such as unstructured or man-made operational errors through comprehensive consideration of cost,accuracy,manufacturing,and application.Based on the concept of mechanical passive compliance,which is widely implemented in robots for interactions,a finger is dedicated to improving mechanical robustness.The finger mechanism not only achieves passive compliance against physical impacts,but also implements the variable stiffness actuator principle in a compact finger without adding supererogatory actuators.It achieves finger stiffness adjustability according to the biologically inspired stiffness variation principle of discarding some mobilities to adjust stiffness.The mechanical design of the finger and its stiffness adjusting methods are elaborated.The stiffness characteristics of the finger joint and the actuation unit are analyzed.Experimental results of the finger joint stiffness identification and finger impact tests under different finger stiffness presets are provided to verify the validity of the model.Fingers have been experimentally proven to be robust against physical impacts.Moreover,the experimental part verifies that fingers have good power,grasping,and manipulation performance.