In recent years,the government has issued a series of documents to promote the construction of digital campuses.This initiative serves to encourage the deep integration of information technology and intelligent techno...In recent years,the government has issued a series of documents to promote the construction of digital campuses.This initiative serves to encourage the deep integration of information technology and intelligent technology education and digital reform,the combination of virtual reality and campus management is the need for innovative thinking and economic and social development,and then better change our learning style and living environment.The construction of the digital campus is based on virtual reality technology,BIM,GIS,and three-dimensional modeling technology to provide an immersive platform for students,promote the integration of virtual reality technology and education,help teachers,students,and parents to understand all kinds of education information and resources,to achieve their interoperability.From the off-campus environment to the school teaching equipment,teachers to teaching quality certification,and learning,to extracurricular entertainment,opening ceremonies to graduation parties,to bring more efficient,convenient,and safe campus life for teachers,students,and staff in school,and break the traditional information restrictions.展开更多
Driving a vehicle is one of the most common daily yet hazardous tasks. One of the great interests in recent research is to characterize a driver’s behaviors through the use of a driving simulation. Virtual reality te...Driving a vehicle is one of the most common daily yet hazardous tasks. One of the great interests in recent research is to characterize a driver’s behaviors through the use of a driving simulation. Virtual reality technology is now a promising alternative to the conventional driving simulations since it provides a more simple, secure and user-friendly environment for data collection. The driving simulator was used to assist novice drivers in learning how to drive in a very calm environment since the driving is not taking place on an actual road. This paper provides new insights regarding a driver’s behavior, techniques and adaptability within a driving simulation using virtual reality technology. The theoretical framework of this driving simulation has been designed using the Unity3D game engine (5.4.0f3 version) and programmed by the C# programming language. To make the driving simulation environment more realistic, the HTC Vive Virtual reality headset, powered by Steamvr, was used. 10 volunteers ranging from ages 19 - 37 participated in the virtual reality driving experiment. Matlab R2016b was used to analyze the data obtained from experiment. This research results are crucial for training drivers and obtaining insight on a driver’s behavior and characteristics. We have gathered diverse results for 10 drivers with different characteristics to be discussed in this study. Driving simulations are not easy to use for some users due to motion sickness, difficulties in adopting to a virtual environment. Furthermore, results of this study clearly show the performance of drivers is closely associated with individual’s behavior and adaptability to the driving simulator. Based on our findings, it can be said that with a VR-HMD (Virtual Reality-Head Mounted Display) Driving Simulator enables us to evaluate a driver’s “performance error”, “recognition errors” and “decision error”. All of which will allow researchers and further studies to potentially establish a method to increase driver safety or alleviate “driving errors”.展开更多
Subjective visual vertical(SVV)and subjective visual horizontal(SVH)tests can be used to evaluate the perception of verticality and horizontality,respectively,and can aid the diagnosis of otolith dysfunction in clinic...Subjective visual vertical(SVV)and subjective visual horizontal(SVH)tests can be used to evaluate the perception of verticality and horizontality,respectively,and can aid the diagnosis of otolith dysfunction in clinical practice.In this study,SVV and SVH screen version tests are implemented using virtual reality(VR)equipment;the proposed test method promotes a more immersive feeling for the subject while using a simple equipment configuration and possessing excellent mobility.To verify the performance of the proposed VR-based SVV and SVH tests,a reliable comparison was made between the traditional screen-based SVV and SVH tests and the proposed method,based on 30 healthy subjects.The average results of our experimental tests on the VR-based binocular SVV and SVH equipment were−0.15◦±1.74 and 0.60◦±1.18,respectively.The proposed VR-based method satisfies the normal tolerance for horizontal or vertical lines,i.e.,a±3◦error,as defined in previous studies,and it can be used to replace existing test methods.展开更多
In the past two decades,there has been a lot of work on computer vision technology that incorporates many tasks which implement basic filtering to image classification.Themajor research areas of this field include obj...In the past two decades,there has been a lot of work on computer vision technology that incorporates many tasks which implement basic filtering to image classification.Themajor research areas of this field include object detection and object recognition.Moreover,wireless communication technologies are presently adopted and they have impacted the way of education that has been changed.There are different phases of changes in the traditional system.Perception of three-dimensional(3D)from two-dimensional(2D)image is one of the demanding tasks.Because human can easily perceive but making 3D using software will take time manually.Firstly,the blackboard has been replaced by projectors and other digital screens so such that people can understand the concept better through visualization.Secondly,the computer labs in schools are now more common than ever.Thirdly,online classes have become a reality.However,transferring to online education or e-learning is not without challenges.Therefore,we propose a method for improving the efficiency of e-learning.Our proposed system consists of twoand-a-half dimensional(2.5D)features extraction using machine learning and image processing.Then,these features are utilized to generate 3D mesh using ellipsoidal deformation method.After that,3D bounding box estimation is applied.Our results show that there is a need to move to 3D virtual reality(VR)with haptic sensors in the field of e-learning for a better understanding of real-world objects.Thus,people will have more information as compared to the traditional or simple online education tools.We compare our result with the ShapeNet dataset to check the accuracy of our proposed method.Our proposed system achieved an accuracy of 90.77%on plane class,85.72%on chair class,and car class have 72.14%.Mean accuracy of our method is 70.89%.展开更多
This study is to combine geological analysis and processing methods with virtual reality.establishing a modeling to greatly improved the reliability and accuracy of geological description and discrimination in Traim B...This study is to combine geological analysis and processing methods with virtual reality.establishing a modeling to greatly improved the reliability and accuracy of geological description and discrimination in Traim Basin.To improve the accuracy of oil and gas exploration.展开更多
In this article, we present a three-dimensional visualization technique that has been developed in order to establish an interactive immersive environment to visualize the particles in granular materials and dislocati...In this article, we present a three-dimensional visualization technique that has been developed in order to establish an interactive immersive environment to visualize the particles in granular materials and dislocations in crystals. Simple elementary objects often exhibit complex collective behavior. Understanding of such behaviors and developments of coarse-scale theories, often requires insight into collective behavior that can only be obtained through immersive visualization. By displaying the computational results in a virtual environment with three-dimensional perception, one can immerse inside the model and analyze the intricate and very complex behavior of individual particles and dislocations. We built the stereographic images of the models using OpenGL rendering technique and then combine with the Virtual Reality technology in order to immerse in the three-dimensional model. A head mounted display has been used to allow the user to immerse inside the models and a flock of birds tracking device that allows the movements around and within the immersive environment.展开更多
This paper reviews virtual reality interface, application and design concept in relation with our experience in implementing a virtual bicycling environment application of the University of Indonesia Green Eco-campus....This paper reviews virtual reality interface, application and design concept in relation with our experience in implementing a virtual bicycling environment application of the University of Indonesia Green Eco-campus. The implementation of the Virtual Reality VR used 3D-Games Studio with Lite-C software. The authors also experiment with the use of a VR device, i.e. 3D E-Dimensional wireless goggle to improve the feel of presence for the user of our application. The authors created the original elements of UI campus environment, such as, buildings, trees, campus buses, cars, and bike tracks, as well as obstacle in the pathways into 3D virtual shape that resembles the real UI campus environment. The bicycle movement, camera perceptions, and object collision handling have also been implemented. Our application is subsequently tested by the users in terms of the general object condition, user's respond to the virtual reality environment and the future development. Some result of implementing the same environment using Alice has also been shown.展开更多
Digitization is the inevitable trend of the social development. In order to meet the requirements of the social development, the garment industry should also speed up the digitization and informationization, to improv...Digitization is the inevitable trend of the social development. In order to meet the requirements of the social development, the garment industry should also speed up the digitization and informationization, to improve the technological contents of the garment induslry. With the emergence and popularization of the emerging computer technology such as the visualization, virtual reality and so on, the clothing design has received a profound influence in the design concept, design style and means of communication. This paper focuses on the analysis of the development of virtual reality technology in the field of fashion design, and summarizes the future prospects.展开更多
With the constant change of fashion trends,interior design styles are changing day by day.Based on Unity3D technology,this paper develops a system for modern interior-style design and application.Taking the residentia...With the constant change of fashion trends,interior design styles are changing day by day.Based on Unity3D technology,this paper develops a system for modern interior-style design and application.Taking the residential interior as a case study,the interior style design is achieved through 3D modeling and texture rendering and then combined with the Unity3D engine to achieve scene roaming and interactive design.The system enables designers to express design concepts more intuitively and efficiently and also improves customer participation and satisfaction.Through the experience of designers and customers,the system is verified to have more practical value than traditional interior design solutions.展开更多
Based on a robotic telesurgery system whose function is to liberate doctor from X-ray radiation, a robotic tele-drill system is constructed. The system is in client/server structure. Client part includes main control ...Based on a robotic telesurgery system whose function is to liberate doctor from X-ray radiation, a robotic tele-drill system is constructed. The system is in client/server structure. Client part includes main control interface, video-audio interface and predictive display interface. Server part includes robot control server and video, audio server. For applying to teleoperation, a virtual reality environment of the system developed by using Java, Java 3D, Pro/E, etc. is established. The geometry and kinematics model of serial robot MOTOMAN sv3x, parallel robot, C-type arm and X-ray machine, surgery bed and its work environment are fulfilled in it. Simulation engine and its simulation syntax are finished, which made the environment controllable. This environment is used as predictive display interface in the telerobotics in order to tackling the problem in visualization feedback as ambiguous or time delay. Experiments that verified feasibility of the system have been done.展开更多
The paper proposes a novel desktop virtual surgical simulation system capable of not only surgical training but also operative planning, surgery rehearsal and telesurgery, which is mainly used on the robot-assisted or...The paper proposes a novel desktop virtual surgical simulation system capable of not only surgical training but also operative planning, surgery rehearsal and telesurgery, which is mainly used on the robot-assisted orthopedic surgery system, HIT-RAOS. The paper first introduces the hardware system: HIT-RAOS. Then presents several major characters of the virtual system: developing tools, building schemes and collision detection algorithm. Additionally, virtual reality based telesurgery is implemented. Based on these works, experiments of locking of intramedullary nails are conducted, and results are content.展开更多
Analytics and visualization of multi-dimensional and complex geo-data,such as three-dimensional(3D)subsurface ground models,is critical for development of underground space and design and construction of underground s...Analytics and visualization of multi-dimensional and complex geo-data,such as three-dimensional(3D)subsurface ground models,is critical for development of underground space and design and construction of underground structures(e.g.,tunnels,dams,and slopes)in engineering practices.Although complicated 3D subsurface ground models now can be developed from site investigation data(e.g.,boreholes)which is often sparse in practice,it remains a great challenge to visualize a 3D subsurface ground model with sophisticated stratigraphic variations by conventional two-dimensional(2D)geological cross-sections.Virtual reality(VR)technology,which has an attractive capability of constructing a virtual environment that links to the physical world,has been rapidly developed and applied to visualization in various disciplines recently.Leveraging on the rapid development of VR,this study proposes a framework for immersive visualization of 3D subsurface ground models in geo-applications using VR technology.The 3D subsurface model is first developed from limited borehole data in a data-driven manner.Then,a VR system is developed using related software and hardware devices currently available in the markets for immersive visualization and interaction with the developed 3D subsurface ground model.The results demonstrate that VR visualization of the 3D subsurface ground model in an immersive environment has great potential in revolutionizing the geo-practices from 2D cross-sections to a 3D immersive virtual environment in digital era,particularly for the emerging digital twins.展开更多
Background:The aims were to describe a software-based reconstruction of the patient-specific kidney cavity intraluminal appearance via a head-mounted device and to estimate its feasibility for training novices.Materia...Background:The aims were to describe a software-based reconstruction of the patient-specific kidney cavity intraluminal appearance via a head-mounted device and to estimate its feasibility for training novices.Materials and methods:In total,15 novices were recruited.Each novice was shown a three-dimensional reconstruction of a patient's computed tomography scan,whose kidney was printed.They then joined the surgeon in the operating room and assisted them in detecting the stone during flexible ureteroscopy on the printed model.Then,each participant did a 7-day virtual reality(VR)study followed by virtual navigation of the printed kidney model and came to the operating room to help the surgeon with ureteroscope navigation.The length of the procedure and the number of attempts to find the targeted calyx were compared.Results:With VR training,the length of the procedure(p=0.0001)and the number of small calyces that were incorrectly identified as containing stones were significantly reduced(p=0.0001).All the novices become highly motivated to improve their endourological skills further.Participants noticed minimal values for nausea and for disorientation.However,oculomotor-related side effects were defined as significant.Five specialists noticed a good similarity between the VR kidney cavity representation and the real picture,strengthening the potential for the novice's education via VR training.Conclusions:Virtual reality simulation allowed for improved spatial orientation within the kidney cavity by the novices and could be a valuable option for future endourological training and curricula.展开更多
3D human face model reconstruction is essential to the generation of facial animations that is widely used in the field of virtual reality (VR). The main issues of 3D facial model reconstruction based on images by vis...3D human face model reconstruction is essential to the generation of facial animations that is widely used in the field of virtual reality (VR). The main issues of 3D facial model reconstruction based on images by vision technologies are in twofold: one is to select and match the corresponding features of face from two images with minimal interaction and the other is to generate the realistic-looking human face model. In this paper, a new algorithm for realistic-looking face reconstruction is presented based on stereo vision. Firstly, a pattern is printed and attached to a planar surface for camera calibration, and corners generation and corners matching between two images are performed by integrating modified image pyramid Lucas-Kanade (PLK) algorithm and local adjustment algorithm, and then 3D coordinates of corners are obtained by 3D reconstruction. Individual face model is generated by the deformation of general 3D model and interpolation of the features. Finally, realistic-looking human face model is obtained after texture mapping and eyes modeling. In addition, some application examples in the field of VR are given. Experimental result shows that the proposed algorithm is robust and the 3D model is photo-realistic.展开更多
Using virtual reality for interactive design gives a designer an intuitive vision of a design and allows the designer to achieve a viable, optimal solution in a timely manner. The article discusses the process of maki...Using virtual reality for interactive design gives a designer an intuitive vision of a design and allows the designer to achieve a viable, optimal solution in a timely manner. The article discusses the process of making the Virtual Reality System of the Humble Administrator’s Garden. Translating building data to the Virtual Reality Modeling Language (VRML) is by far unsatisfactory. This creates a challenge for computer designers to do optimization to meet requirements. Five different approaches to optimize models have been presented in this paper. The other methods are to optimize VRML and to reduce the file size. This is done by keeping polygon counts to a minimum and by applying such techniques as object culling and level-of- detail switching.展开更多
This article provides new insights regarding driver behavior, techniques and adaptability. This study has been done because: 1) driving a vehicle is critical and one of the most common daily tasks;2) simulators are us...This article provides new insights regarding driver behavior, techniques and adaptability. This study has been done because: 1) driving a vehicle is critical and one of the most common daily tasks;2) simulators are used for the purpose of training and researching driver behavior and characteristics;3) the article addresses driver experience by involving new virtual reality technologies. A simulator has been used to assist novice drivers to learn how to drive in a very safe environment, and researching and collecting data for researchers has become easier due to this secure and user-friendly environment. The theoretical framework of this driving simulation has been designed by using the Unity3D game engine (5.4.f3 version) and was programmed with the C# programming language. To make the driving environment more realistic we, in addition, utilized the HTC Vive Virtual reality headset which is powered by Steamvr. We used Unity Game Engine to design our scenarios and maps because by doing this we are able to be more flexible with designing. In this study, we asked 10 people ranging from ages 19 - 37 to participate in this experiment. Four Japanese divers and six non-Japanese drivers engaged in this study, some of which do not have a driver’s license in Japan. A few Japanese drivers have a license and car, while others have a license but no car. In order to analyze the results of this experiment we are used MatlabR2016b to analyze the gathered data. The result of this research indicates that individual’s behavior and characteristics such as controlling the speed, remaining calm and relaxed when driving, driving at appropriate speeds depending on changes in road structures and etc. can affect their driving performance.展开更多
It is a key feature to embed 3D realistic sound effect in the future multimedia and virtual reality systems. Recent research on acoustics and psychoacoustics reveals the important cues for sound localization and sound...It is a key feature to embed 3D realistic sound effect in the future multimedia and virtual reality systems. Recent research on acoustics and psychoacoustics reveals the important cues for sound localization and sound perception. One promising approach to generate 3D realistic sound effect uses two earphones by simulating the sound waveforms from sound source to eardrum. This paper summarizes two methods for generating 3D realistic sound and points out their inherent drawbacks. To overcome these drawbacks we propose a simplified model to generate 3D realistic sound at any positions in the horizontal plane based on the results of sound perception and localization. Experimental results show that the model is correct and efficient.展开更多
As an important technology of digital construction,real 3D models can improve the immersion and realism of virtual reality(VR)scenes.The large amount of data for real 3D scenes requires more effective rendering method...As an important technology of digital construction,real 3D models can improve the immersion and realism of virtual reality(VR)scenes.The large amount of data for real 3D scenes requires more effective rendering methods,but the current rendering optimization methods have some defects and cannot render real 3D scenes in virtual reality.In this study,the location of the viewing frustum is predicted by a Kalman filter,and eye-tracking equipment is used to recognize the region of interest(ROI)in the scene.Finally,the real 3D model of interest in the predicted frustum is rendered first.The experimental results show that the method of this study can predict the frustrum location approximately 200 ms in advance,the prediction accuracy is approximately 87%,the scene rendering efficiency is improved by 8.3%,and the motion sickness is reduced by approximately 54.5%.These studies help promote the use of real 3D models in virtual reality and ROI recognition methods.In future work,we will further improve the prediction accuracy of viewing frustums in virtual reality and the application of eye tracking in virtual geographic scenes.展开更多
A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed mode...A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed model uses the coordinates and traction speed of the shearer to calculate the frequency of the circular hydraulic support and realize the coordinated operation of the three-machine mining technology.A unity3d hardware-in-the-loop simulation experimental hearer and hydraulic support platform was used to validate the model of autonomous follow-up.The results indicate that collaborative control of coal mining allowed for an efficiency 3.76%higher than under automatic operation mode and 46.03%higher than under manual control;thus,The mathematical model provided an improved production efficiency of the fully mechanized mining face.The mathematical model also provides a more intelligent and reliable security support,and improves the intelligent level of hydraulic support follow-up control.展开更多
文摘In recent years,the government has issued a series of documents to promote the construction of digital campuses.This initiative serves to encourage the deep integration of information technology and intelligent technology education and digital reform,the combination of virtual reality and campus management is the need for innovative thinking and economic and social development,and then better change our learning style and living environment.The construction of the digital campus is based on virtual reality technology,BIM,GIS,and three-dimensional modeling technology to provide an immersive platform for students,promote the integration of virtual reality technology and education,help teachers,students,and parents to understand all kinds of education information and resources,to achieve their interoperability.From the off-campus environment to the school teaching equipment,teachers to teaching quality certification,and learning,to extracurricular entertainment,opening ceremonies to graduation parties,to bring more efficient,convenient,and safe campus life for teachers,students,and staff in school,and break the traditional information restrictions.
文摘Driving a vehicle is one of the most common daily yet hazardous tasks. One of the great interests in recent research is to characterize a driver’s behaviors through the use of a driving simulation. Virtual reality technology is now a promising alternative to the conventional driving simulations since it provides a more simple, secure and user-friendly environment for data collection. The driving simulator was used to assist novice drivers in learning how to drive in a very calm environment since the driving is not taking place on an actual road. This paper provides new insights regarding a driver’s behavior, techniques and adaptability within a driving simulation using virtual reality technology. The theoretical framework of this driving simulation has been designed using the Unity3D game engine (5.4.0f3 version) and programmed by the C# programming language. To make the driving simulation environment more realistic, the HTC Vive Virtual reality headset, powered by Steamvr, was used. 10 volunteers ranging from ages 19 - 37 participated in the virtual reality driving experiment. Matlab R2016b was used to analyze the data obtained from experiment. This research results are crucial for training drivers and obtaining insight on a driver’s behavior and characteristics. We have gathered diverse results for 10 drivers with different characteristics to be discussed in this study. Driving simulations are not easy to use for some users due to motion sickness, difficulties in adopting to a virtual environment. Furthermore, results of this study clearly show the performance of drivers is closely associated with individual’s behavior and adaptability to the driving simulator. Based on our findings, it can be said that with a VR-HMD (Virtual Reality-Head Mounted Display) Driving Simulator enables us to evaluate a driver’s “performance error”, “recognition errors” and “decision error”. All of which will allow researchers and further studies to potentially establish a method to increase driver safety or alleviate “driving errors”.
基金supported by the Soonchunhyang University Research Fund and 2018 Ulsan University Hospital Research Grant(UUH-2018-12)(Grantee:JYP,http://www.uuh.ulsan.kr).The authors are grateful for their supports.
文摘Subjective visual vertical(SVV)and subjective visual horizontal(SVH)tests can be used to evaluate the perception of verticality and horizontality,respectively,and can aid the diagnosis of otolith dysfunction in clinical practice.In this study,SVV and SVH screen version tests are implemented using virtual reality(VR)equipment;the proposed test method promotes a more immersive feeling for the subject while using a simple equipment configuration and possessing excellent mobility.To verify the performance of the proposed VR-based SVV and SVH tests,a reliable comparison was made between the traditional screen-based SVV and SVH tests and the proposed method,based on 30 healthy subjects.The average results of our experimental tests on the VR-based binocular SVV and SVH equipment were−0.15◦±1.74 and 0.60◦±1.18,respectively.The proposed VR-based method satisfies the normal tolerance for horizontal or vertical lines,i.e.,a±3◦error,as defined in previous studies,and it can be used to replace existing test methods.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2023-2018-0-01426)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).In additionsupport of the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University,This work has also been supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R239),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.Alsosupported by the Taif University Researchers Supporting Project Number(TURSP-2020/115),Taif University,Taif,Saudi Arabia.
文摘In the past two decades,there has been a lot of work on computer vision technology that incorporates many tasks which implement basic filtering to image classification.Themajor research areas of this field include object detection and object recognition.Moreover,wireless communication technologies are presently adopted and they have impacted the way of education that has been changed.There are different phases of changes in the traditional system.Perception of three-dimensional(3D)from two-dimensional(2D)image is one of the demanding tasks.Because human can easily perceive but making 3D using software will take time manually.Firstly,the blackboard has been replaced by projectors and other digital screens so such that people can understand the concept better through visualization.Secondly,the computer labs in schools are now more common than ever.Thirdly,online classes have become a reality.However,transferring to online education or e-learning is not without challenges.Therefore,we propose a method for improving the efficiency of e-learning.Our proposed system consists of twoand-a-half dimensional(2.5D)features extraction using machine learning and image processing.Then,these features are utilized to generate 3D mesh using ellipsoidal deformation method.After that,3D bounding box estimation is applied.Our results show that there is a need to move to 3D virtual reality(VR)with haptic sensors in the field of e-learning for a better understanding of real-world objects.Thus,people will have more information as compared to the traditional or simple online education tools.We compare our result with the ShapeNet dataset to check the accuracy of our proposed method.Our proposed system achieved an accuracy of 90.77%on plane class,85.72%on chair class,and car class have 72.14%.Mean accuracy of our method is 70.89%.
文摘This study is to combine geological analysis and processing methods with virtual reality.establishing a modeling to greatly improved the reliability and accuracy of geological description and discrimination in Traim Basin.To improve the accuracy of oil and gas exploration.
文摘In this article, we present a three-dimensional visualization technique that has been developed in order to establish an interactive immersive environment to visualize the particles in granular materials and dislocations in crystals. Simple elementary objects often exhibit complex collective behavior. Understanding of such behaviors and developments of coarse-scale theories, often requires insight into collective behavior that can only be obtained through immersive visualization. By displaying the computational results in a virtual environment with three-dimensional perception, one can immerse inside the model and analyze the intricate and very complex behavior of individual particles and dislocations. We built the stereographic images of the models using OpenGL rendering technique and then combine with the Virtual Reality technology in order to immerse in the three-dimensional model. A head mounted display has been used to allow the user to immerse inside the models and a flock of birds tracking device that allows the movements around and within the immersive environment.
文摘This paper reviews virtual reality interface, application and design concept in relation with our experience in implementing a virtual bicycling environment application of the University of Indonesia Green Eco-campus. The implementation of the Virtual Reality VR used 3D-Games Studio with Lite-C software. The authors also experiment with the use of a VR device, i.e. 3D E-Dimensional wireless goggle to improve the feel of presence for the user of our application. The authors created the original elements of UI campus environment, such as, buildings, trees, campus buses, cars, and bike tracks, as well as obstacle in the pathways into 3D virtual shape that resembles the real UI campus environment. The bicycle movement, camera perceptions, and object collision handling have also been implemented. Our application is subsequently tested by the users in terms of the general object condition, user's respond to the virtual reality environment and the future development. Some result of implementing the same environment using Alice has also been shown.
文摘Digitization is the inevitable trend of the social development. In order to meet the requirements of the social development, the garment industry should also speed up the digitization and informationization, to improve the technological contents of the garment induslry. With the emergence and popularization of the emerging computer technology such as the visualization, virtual reality and so on, the clothing design has received a profound influence in the design concept, design style and means of communication. This paper focuses on the analysis of the development of virtual reality technology in the field of fashion design, and summarizes the future prospects.
基金Research and Development of Wear-resistant Filament Monitoring System for Medicinal Core(Project No.:H20240260)Anqing Normal University Wanjiang Cultural Digital Protection and Intelligent Processing Key Laboratory Project,“Huangmei Opera Intelligent Digital Human Design and Application”+1 种基金Anqing Mayor Triangle Future Industry Research Institute Science and Technology Project,“Exploration of the Metaverse Design of Opera Culture and the Integration Model of Cultural Tourism”Anhui Provincial Social Science Innovation and Development Research Project,“Huangmei Opera Cultural Relics and Cultural Digital Native Protection and Utilization Innovation Research Project(Project No.:2023KY012)”。
文摘With the constant change of fashion trends,interior design styles are changing day by day.Based on Unity3D technology,this paper develops a system for modern interior-style design and application.Taking the residential interior as a case study,the interior style design is achieved through 3D modeling and texture rendering and then combined with the Unity3D engine to achieve scene roaming and interactive design.The system enables designers to express design concepts more intuitively and efficiently and also improves customer participation and satisfaction.Through the experience of designers and customers,the system is verified to have more practical value than traditional interior design solutions.
文摘Based on a robotic telesurgery system whose function is to liberate doctor from X-ray radiation, a robotic tele-drill system is constructed. The system is in client/server structure. Client part includes main control interface, video-audio interface and predictive display interface. Server part includes robot control server and video, audio server. For applying to teleoperation, a virtual reality environment of the system developed by using Java, Java 3D, Pro/E, etc. is established. The geometry and kinematics model of serial robot MOTOMAN sv3x, parallel robot, C-type arm and X-ray machine, surgery bed and its work environment are fulfilled in it. Simulation engine and its simulation syntax are finished, which made the environment controllable. This environment is used as predictive display interface in the telerobotics in order to tackling the problem in visualization feedback as ambiguous or time delay. Experiments that verified feasibility of the system have been done.
文摘The paper proposes a novel desktop virtual surgical simulation system capable of not only surgical training but also operative planning, surgery rehearsal and telesurgery, which is mainly used on the robot-assisted orthopedic surgery system, HIT-RAOS. The paper first introduces the hardware system: HIT-RAOS. Then presents several major characters of the virtual system: developing tools, building schemes and collision detection algorithm. Additionally, virtual reality based telesurgery is implemented. Based on these works, experiments of locking of intramedullary nails are conducted, and results are content.
基金supported by the Research Grant Council of Hong Kong Special Administrative Region(Project No.CityU 11203322)Shenzhen Science and Technology Innovation Commission(Shenzhen-Hong Kong-Macao Science and Technology Project(Category C)No.SGDX20210823104002020),China.
文摘Analytics and visualization of multi-dimensional and complex geo-data,such as three-dimensional(3D)subsurface ground models,is critical for development of underground space and design and construction of underground structures(e.g.,tunnels,dams,and slopes)in engineering practices.Although complicated 3D subsurface ground models now can be developed from site investigation data(e.g.,boreholes)which is often sparse in practice,it remains a great challenge to visualize a 3D subsurface ground model with sophisticated stratigraphic variations by conventional two-dimensional(2D)geological cross-sections.Virtual reality(VR)technology,which has an attractive capability of constructing a virtual environment that links to the physical world,has been rapidly developed and applied to visualization in various disciplines recently.Leveraging on the rapid development of VR,this study proposes a framework for immersive visualization of 3D subsurface ground models in geo-applications using VR technology.The 3D subsurface model is first developed from limited borehole data in a data-driven manner.Then,a VR system is developed using related software and hardware devices currently available in the markets for immersive visualization and interaction with the developed 3D subsurface ground model.The results demonstrate that VR visualization of the 3D subsurface ground model in an immersive environment has great potential in revolutionizing the geo-practices from 2D cross-sections to a 3D immersive virtual environment in digital era,particularly for the emerging digital twins.
文摘Background:The aims were to describe a software-based reconstruction of the patient-specific kidney cavity intraluminal appearance via a head-mounted device and to estimate its feasibility for training novices.Materials and methods:In total,15 novices were recruited.Each novice was shown a three-dimensional reconstruction of a patient's computed tomography scan,whose kidney was printed.They then joined the surgeon in the operating room and assisted them in detecting the stone during flexible ureteroscopy on the printed model.Then,each participant did a 7-day virtual reality(VR)study followed by virtual navigation of the printed kidney model and came to the operating room to help the surgeon with ureteroscope navigation.The length of the procedure and the number of attempts to find the targeted calyx were compared.Results:With VR training,the length of the procedure(p=0.0001)and the number of small calyces that were incorrectly identified as containing stones were significantly reduced(p=0.0001).All the novices become highly motivated to improve their endourological skills further.Participants noticed minimal values for nausea and for disorientation.However,oculomotor-related side effects were defined as significant.Five specialists noticed a good similarity between the VR kidney cavity representation and the real picture,strengthening the potential for the novice's education via VR training.Conclusions:Virtual reality simulation allowed for improved spatial orientation within the kidney cavity by the novices and could be a valuable option for future endourological training and curricula.
文摘3D human face model reconstruction is essential to the generation of facial animations that is widely used in the field of virtual reality (VR). The main issues of 3D facial model reconstruction based on images by vision technologies are in twofold: one is to select and match the corresponding features of face from two images with minimal interaction and the other is to generate the realistic-looking human face model. In this paper, a new algorithm for realistic-looking face reconstruction is presented based on stereo vision. Firstly, a pattern is printed and attached to a planar surface for camera calibration, and corners generation and corners matching between two images are performed by integrating modified image pyramid Lucas-Kanade (PLK) algorithm and local adjustment algorithm, and then 3D coordinates of corners are obtained by 3D reconstruction. Individual face model is generated by the deformation of general 3D model and interpolation of the features. Finally, realistic-looking human face model is obtained after texture mapping and eyes modeling. In addition, some application examples in the field of VR are given. Experimental result shows that the proposed algorithm is robust and the 3D model is photo-realistic.
基金Funded by the Natural Science Foundation of China (No. 50378037)
文摘Using virtual reality for interactive design gives a designer an intuitive vision of a design and allows the designer to achieve a viable, optimal solution in a timely manner. The article discusses the process of making the Virtual Reality System of the Humble Administrator’s Garden. Translating building data to the Virtual Reality Modeling Language (VRML) is by far unsatisfactory. This creates a challenge for computer designers to do optimization to meet requirements. Five different approaches to optimize models have been presented in this paper. The other methods are to optimize VRML and to reduce the file size. This is done by keeping polygon counts to a minimum and by applying such techniques as object culling and level-of- detail switching.
文摘This article provides new insights regarding driver behavior, techniques and adaptability. This study has been done because: 1) driving a vehicle is critical and one of the most common daily tasks;2) simulators are used for the purpose of training and researching driver behavior and characteristics;3) the article addresses driver experience by involving new virtual reality technologies. A simulator has been used to assist novice drivers to learn how to drive in a very safe environment, and researching and collecting data for researchers has become easier due to this secure and user-friendly environment. The theoretical framework of this driving simulation has been designed by using the Unity3D game engine (5.4.f3 version) and was programmed with the C# programming language. To make the driving environment more realistic we, in addition, utilized the HTC Vive Virtual reality headset which is powered by Steamvr. We used Unity Game Engine to design our scenarios and maps because by doing this we are able to be more flexible with designing. In this study, we asked 10 people ranging from ages 19 - 37 to participate in this experiment. Four Japanese divers and six non-Japanese drivers engaged in this study, some of which do not have a driver’s license in Japan. A few Japanese drivers have a license and car, while others have a license but no car. In order to analyze the results of this experiment we are used MatlabR2016b to analyze the gathered data. The result of this research indicates that individual’s behavior and characteristics such as controlling the speed, remaining calm and relaxed when driving, driving at appropriate speeds depending on changes in road structures and etc. can affect their driving performance.
文摘It is a key feature to embed 3D realistic sound effect in the future multimedia and virtual reality systems. Recent research on acoustics and psychoacoustics reveals the important cues for sound localization and sound perception. One promising approach to generate 3D realistic sound effect uses two earphones by simulating the sound waveforms from sound source to eardrum. This paper summarizes two methods for generating 3D realistic sound and points out their inherent drawbacks. To overcome these drawbacks we propose a simplified model to generate 3D realistic sound at any positions in the horizontal plane based on the results of sound perception and localization. Experimental results show that the model is correct and efficient.
基金supported by the National Natural Science Foundation of China(grant numbers U2034202,41871289,42171397)the Sichuan Science and Technology Program(grant number 2020JDTD0003).
文摘As an important technology of digital construction,real 3D models can improve the immersion and realism of virtual reality(VR)scenes.The large amount of data for real 3D scenes requires more effective rendering methods,but the current rendering optimization methods have some defects and cannot render real 3D scenes in virtual reality.In this study,the location of the viewing frustum is predicted by a Kalman filter,and eye-tracking equipment is used to recognize the region of interest(ROI)in the scene.Finally,the real 3D model of interest in the predicted frustum is rendered first.The experimental results show that the method of this study can predict the frustrum location approximately 200 ms in advance,the prediction accuracy is approximately 87%,the scene rendering efficiency is improved by 8.3%,and the motion sickness is reduced by approximately 54.5%.These studies help promote the use of real 3D models in virtual reality and ROI recognition methods.In future work,we will further improve the prediction accuracy of viewing frustums in virtual reality and the application of eye tracking in virtual geographic scenes.
基金This work was supported by the Project funded by China Postdoctoral Science Foundation under Grant 2019M651081the Merit Funding for the Returned Overseas Personnel Sci-Tech Activities of Shanxi Province under Grant 2016 and Key Research and Development Program of Shanxi(2019)and Innovation Programs of Higher Education Institutions in Shanxi(2019L0305).
文摘A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed model uses the coordinates and traction speed of the shearer to calculate the frequency of the circular hydraulic support and realize the coordinated operation of the three-machine mining technology.A unity3d hardware-in-the-loop simulation experimental hearer and hydraulic support platform was used to validate the model of autonomous follow-up.The results indicate that collaborative control of coal mining allowed for an efficiency 3.76%higher than under automatic operation mode and 46.03%higher than under manual control;thus,The mathematical model provided an improved production efficiency of the fully mechanized mining face.The mathematical model also provides a more intelligent and reliable security support,and improves the intelligent level of hydraulic support follow-up control.