期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
A Novel Disturbance Observer Based Fixed-Time Sliding Mode Control for Robotic Manipulators With Global Fast Convergence
1
作者 Dan Zhang Jiabin Hu +2 位作者 Jun Cheng Zheng-Guang Wu Huaicheng Yan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期661-672,共12页
This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th... This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance. 展开更多
关键词 Disturbance observer(DO) fixed-time non-singular sliding mode control robotic manipulator trajectory tracking
下载PDF
FUZZY COORDINATION AND FORCE/POSITION CONTROL OF ROBOTIC MANIPULATOR
2
作者 乔兵 尉忠信 朱剑英 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1999年第1期55-60,共6页
It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on l... It is crucial for implementing force/position control of robotic manipulator under the constraint of unknown environment to determine the force control and the position control directions. This paper presents an on line algorithm to real timely estimate the tangent and the normal vectors of the constraint surface based on the measured contact force under the consideration of frictional force. A fuzzy synthesis policy is proposed to coordinate the conflict between the compliant force control and the stiff position control. An experimental study on an AdeptThree, a SCARA type robotic manipulator, is conducted. The experimental results show that the policy presented in the paper is effective. 展开更多
关键词 robotic manipulator force/position control CONSTRAINTS COORDINATION fuzzy synthesis
下载PDF
Impedance force control for position controlled robotic manipulators under the constraint of unknown environments
3
作者 乔兵 陆荣鑑 《Journal of Southeast University(English Edition)》 EI CAS 2003年第4期359-363,共5页
A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to ge... A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy. 展开更多
关键词 robotic manipulators force/position control unknown constraint
下载PDF
Adaptive Fuzzy Backstepping Tracking Control for Flexible Robotic Manipulator 被引量:15
4
作者 Wanmin Chang Yongming Li Shaocheng Tong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第12期1923-1930,共8页
In this paper,an adaptive fuzzy state feedback control method is proposed for the single-link robotic manipulator system.The considered system contains unknown nonlinearfunction and actuator saturation.Fuzzy logic sys... In this paper,an adaptive fuzzy state feedback control method is proposed for the single-link robotic manipulator system.The considered system contains unknown nonlinearfunction and actuator saturation.Fuzzy logic systems(FLSs)and a smooth function are used to approximate the unknownnonlinearities and the actuator saturation,respectively.By com-bining the command-filter technique with the backsteppingdesign algorithm,a novel adaptive fuuzy tracking backsteppingcontrol method is developed.It is proved that the adaptive fuuzycontrol scheme can guarantee that all the variables in the closed-loop system are bounded,and the system output can track thegiven reference signal as close as possible.Simulation results areprovided to illustrate the effectiveness of the proposed approach. 展开更多
关键词 Actuator saturation backstepping design command-filter technique flexible robotic manipulator fuzzy adaptive control
下载PDF
Wavelet network solution for the inverse kinematics problem in robotic manipulator 被引量:5
5
作者 CHEN Hua CHEN Wei-shan XIE Tao 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第4期525-529,共5页
Wavelet network, a class of neural network consisting of wavelets, is proposed to solve the inverse kinematics problem in robotic manipulator. A wavelet network suitable for dealing with multi-input and multi-output s... Wavelet network, a class of neural network consisting of wavelets, is proposed to solve the inverse kinematics problem in robotic manipulator. A wavelet network suitable for dealing with multi-input and multi-output system is constructed. The network is optimized by reducing the number of wavelets handling large dimension problem according to the sample data. The algorithms for sparseness analysis of input data and fitting wavelets to the output data with orthogonal method are introduced. Then Levenberg-Marquardt algorithm is used to train the network. Simulation results showed that this method is capable of solving the inverse kinematics problem for PUMA560. 展开更多
关键词 Inverse kinematics problem robotic manipulator Wavelet network
下载PDF
Neural-network-based two-loop control of robotic manipulators including actuator dynamics in task space 被引量:3
6
作者 Liangyong WANG Tianyou CHAI Zheng FANG 《控制理论与应用(英文版)》 EI 2009年第2期112-118,共7页
A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task sp... A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task space. It provides a joint velocity reference signal to the inner one. The inner loop implements a velocity servo loop at the robot joint level. A radial basis function network (RBFN) is integrated with proportional-integral (PI) control to construct a velocity tracking control scheme for the inner loop. Finally, a prototype technology based control system is designed for a robotic manipulator. The proposed control scheme is applied to the robotic manipulator. Experimental results confirm the validity of the proposed control scheme by comparing it with other control strategies. 展开更多
关键词 robotic manipulator Motion control Neural network Task space
下载PDF
Kinematics of a Trinal-Branch Space Robotic Manipulator with Redundancy 被引量:1
7
作者 贾庆轩 叶平 +1 位作者 孙汉旭 宋荆洲 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第4期378-384,共7页
This paper presents a trinal-branch space robotic manipulator with redundancy, due to hash application environments, such as in the station. One end-effector of the manipulator can be attached to the base, and other t... This paper presents a trinal-branch space robotic manipulator with redundancy, due to hash application environments, such as in the station. One end-effector of the manipulator can be attached to the base, and other two be controlled to accomplish tasks. The manipulator permits operation of science payload, during periods when astronauts may not be present. In order to provide theoretic basis for kinematics optimization, dynamics optimization and fault-tolerant control, its inverse kinematics is analyzed by using screw theory, and its unified formulation is established. Base on closed-form resolution of spherical wrist, a simplified inverse kinematics is proposed. Computer simulation results demonstrate the validity of the proposed inverse kinematics. 展开更多
关键词 space robotic manipulators REDUNDANCY screw theory inverse kinematics
下载PDF
Fuzzy Logic Control of a Robotic Manipulator for Obstacles Avoidance 被引量:1
8
作者 Nabeel Kadim Abid Al-Sahib Israa Rafie Shareef 《Journal of Mechanics Engineering and Automation》 2012年第1期9-16,共8页
This work presents a Fuzzy Logic Controller (FLC) assigned to control a robotic arm motion while avoiding the obstacles that may face the robotic arm in its movement from the initial point to the final point in an o... This work presents a Fuzzy Logic Controller (FLC) assigned to control a robotic arm motion while avoiding the obstacles that may face the robotic arm in its movement from the initial point to the final point in an optimized manner, in addition to avoid the singularity phenomenon, and without any exceeding of the physical constraints of the robot arm. A real platform (5 DOF "Degree Of Freedom" Lab Volt 5150 Robotic Arm) is used to carry this work practically, in addition to providing it by a vision sensor, where a new approach is proposed to inspect the robot work environment using a designed integrated MATLAB program having the ability to recognize the changeable locations of each of the robotic arm's end-effector, the goal, and the multi existed obstacles through a recorded film taken by a webcam, then these information will be treated using the FLC where its outputs represent the values that must be delivered to the robot to adopt them in its next steps till reaching to the goal in collision-free movements. The experimental results showed that the developed robotic ann travels successfully from Start to Goal where a high percentage of accuracy in arriving to Goal was achieved, and without colliding with any obstacle ensuring the harmonization between the theoretical part and the experimental part in achieving the best results of controlling the robotic arm's motion. 展开更多
关键词 robotic manipulator fuzzy logic controller obstacles avoidance.
下载PDF
Development of a Stereo Vision-based Pick and Place System for Robotic Manipulators 被引量:2
9
作者 Thakshila THILAKANAYAKE Nirasha HERATH Migara LIYANAGE 《Instrumentation》 2021年第2期1-13,共13页
Conventional robotic manipulators consist of touch and vision sensors in order to pick and place differently shaped objects.Due to the technology development and degrading sensors over a long period,the stereo vision ... Conventional robotic manipulators consist of touch and vision sensors in order to pick and place differently shaped objects.Due to the technology development and degrading sensors over a long period,the stereo vision technique has become a promising alternative.In this study,a low-cost stereo vision-based system,and a gripper to be placed at the end of the robot arm(Fanuc M10 iA/12)are developed for position and orientation estimation of robotic manipulators to pick and place different shaped objects.The stereo vision system developed in this research is used to estimate the position(X,Y,Z),orientation(P_(y))of the Center of Volume of four standard objects(cube,cuboid,cylinder,and sphere)whereas the robot arm with the gripper is used to mechanically pick and place the objects.The stereo vision system is placed on the movable robot arm,and it consists of two cameras to capture two 2D views of a stationary object to derive 3D depth information in 3D space.Moreover,a graphical user interface is developed to train a linear regression model,live predict the coordinates of the objects,and check the accuracy of the predicted data.The graphical user interface can also send predicted coordinates and angles to the gripper and the robot arm.The project is facilitated with python programming language modules and image processing techniques.Identification of the stationary object and estimation of its coordinates is done using image processing techniques.The final product can be identified as a device that converts conventional robot arms without an image processing vision system into a highly precise and accurate robot arm with an image processing vision system.Experimental studies are performed to test the efficiency and effectiveness of used techniques and the gripper prototype.Necessary actions are taken to minimize the errors in position and orientation estimation.In addition,as a future implementation,an embedded system will be developed with a user-friendly software interface to install the vision system into the Fanuc M10 iA/12 robot arm and will upgrade the system to a device that can be implemented with any kind of customized robot arms available in the industry. 展开更多
关键词 Stereo Vision Image Processing robotic manipulators
下载PDF
Takagi–Sugeno Fuzzy Modeling and Control for Effective Robotic Manipulator Motion 被引量:1
10
作者 Izzat Al-Darraji Ayad AKakei +5 位作者 Ayad Ghany Ismaeel Georgios Tsaramirsis Fazal Qudus Khan Princy Randhawa Muath Alrammal Sadeeq Jan 《Computers, Materials & Continua》 SCIE EI 2022年第4期1011-1024,共14页
Robotic manipulators are widely used in applications that require fast and precise motion.Such devices,however,are prompt to nonlinear control issues due to the flexibility in joints and the friction in the motors wit... Robotic manipulators are widely used in applications that require fast and precise motion.Such devices,however,are prompt to nonlinear control issues due to the flexibility in joints and the friction in the motors within the dynamics of their rigid part.To address these issues,the Linear Matrix Inequalities(LMIs)and Parallel Distributed Compensation(PDC)approaches are implemented in the Takagy–Sugeno Fuzzy Model(T-SFM).We propose the following methodology;initially,the state space equations of the nonlinear manipulator model are derived.Next,a Takagy–Sugeno Fuzzy Model(T-SFM)technique is used for linearizing the state space equations of the nonlinear manipulator.The T-SFM controller is developed using the Parallel Distributed Compensation(PDC)method.The prime concept of the designed controller is to compensate for all the fuzzy rules.Furthermore,the Linear Matrix Inequalities(LMIs)are applied to generate adequate cases to ensure stability and control.Convex programming methods are applied to solve the developed LMIs problems.Simulations developed for the proposed model show that the proposed controller stabilized the system with zero tracking error in less than 1.5 s. 展开更多
关键词 Nonlinear robot manipulator precise fast robot motion flexible joints motor friction Takagy-Sugeno fuzzy control modeling nonlinear flexible robot system
下载PDF
ANALYTICAL MODEL ALGORITHM FOR DYNAMICS OF ROBOTIC MANIPULATORS 被引量:6
11
作者 Xu Liju Fan ShouwenChengdu University of Science and TechnologyChen YongSouthwest Jiaotong University 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1995年第2期168-171,共4页
A simple analytical model method for dynamics of robotic manipulators is proposed.Problem of deriving model matrix elements is transformed into problem of solving for driving forceand driving torque under specified co... A simple analytical model method for dynamics of robotic manipulators is proposed.Problem of deriving model matrix elements is transformed into problem of solving for driving forceand driving torque under specified condition by recursive dynamic equations. Expressions of reaction force in arbitrary joint in numeric-symbolic form are also derived. The properties of modelmatrices are given. Corresponding software which can recognize and manipulate symbols is developed and can be used to generate model and real-time code of robotic dynamics. 展开更多
关键词 robotic manipulator Analytical model
下载PDF
Characteristic model-based consensus of networked heterogeneous robotic manipulators with dynamic uncertainties 被引量:7
12
作者 WANG LiJiao MENG Bin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第1期63-71,共9页
In this paper, we address the characteristic model-based discrete-time consensus problem of networked robotic manipulators with dynamic uncertainties. The research objective is to achieve joint-position consensus of m... In this paper, we address the characteristic model-based discrete-time consensus problem of networked robotic manipulators with dynamic uncertainties. The research objective is to achieve joint-position consensus of multiple robotic agents interconnected on directed graphs containing a spanning tree. A novel characteristic model-based distributed adaptive control scenario is proposed with a state-relied projection estimation law and a characteristic model-based distributed controller. The performance analysis is also unfolded where the uniform ultimate boundedness(UUB) of consensus errors is derived by resorting to the discrete-time-domain stability analysis tool and the graph theory. Finally, numerical simulations illustrate the effectiveness of the proposed theoretical strategy. 展开更多
关键词 networked robotic manipulators consensus discrete time characteristic model distributed adaptive controller uniform ultimate boundedness(UUB)
原文传递
Recursive recurrent neural network:A novel model for manipulator control with different levels of physical constraints 被引量:2
13
作者 Zhan Li Shuai Li 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期622-634,共13页
Manipulators actuate joints to let end effectors to perform precise path tracking tasks.Recurrent neural network which is described by dynamic models with parallel processing capability,is a powerful tool for kinemati... Manipulators actuate joints to let end effectors to perform precise path tracking tasks.Recurrent neural network which is described by dynamic models with parallel processing capability,is a powerful tool for kinematic control of manipulators.Due to physical limitations and actuation saturation of manipulator joints,the involvement of joint constraints for kinematic control of manipulators is essential and critical.However,current existing manipulator control methods based on recurrent neural networks mainly handle with limited levels of joint angular constraints,and to the best of our knowledge,methods for kinematic control of manipulators with higher order joint constraints based on recurrent neural networks are not yet reported.In this study,for the first time,a novel recursive recurrent network model is proposed to solve the kinematic control issue for manipulators with different levels of physical constraints,and the proposed recursive recurrent neural network can be formulated as a new manifold system to ensure control solution within all of the joint constraints in different orders.The theoretical analysis shows the stability and the purposed recursive recurrent neural network and its convergence to solution.Simulation results further demonstrate the effectiveness of the proposed method in end‐effector path tracking control under different levels of joint constraints based on the Kuka manipulator system.Comparisons with other methods such as the pseudoinverse‐based method and conventional recurrent neural network method substantiate the superiority of the proposed method. 展开更多
关键词 dynamic neural networks recursive computation robotic manipulator
下载PDF
FINITE TIME TRACKING CONTROL FOR RIGID ROBOTIC MANIPULATORS WITH FRICTION AND EXTERNAL DISTURBANCES
14
作者 GuangdengZONG YuqiangWU LihuaZHANG 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2005年第1期115-125,共11页
关键词 Finite time convergence switch control singularity problem robotic manipulator systems
原文传递
Task-Space Tracking Control of Robotic Manipulator Via Intermittent Controller
15
作者 MA Mihua CAI Jianping 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2022年第6期2248-2262,共15页
An intermittent controller for robotic manipulator in task space was developed in this paper.In task space,for given a desired time-varying trajectory,the robot end-effector can track the desired target under the desi... An intermittent controller for robotic manipulator in task space was developed in this paper.In task space,for given a desired time-varying trajectory,the robot end-effector can track the desired target under the designed intermittent controller.Different from most of the existing works on control of robotic manipulator,the intermittent control for robotic manipulator is discussed in task space instead of joint space.Besides,the desired trajectory can be time-varying and not limited to constant.As a direct application,the authors implemented the proposed controller on tracking of a two-link robotic manipulator in task space.Numerical simulations demonstrate the effectiveness and feasibility of the proposed intermittent control strategy. 展开更多
关键词 Intermittent controller robotic manipulator task-space tracking
原文传递
NEW APPROACHES FOR COMPUTING DYNAMIC LOAD-CARRYING CAPACITY OF MULTIPLE COOPERATING ROBOTIC MANIPULATORS
16
作者 Yang Yulin Lu Ling Zhao Yongsheng Zhou Yulin Yanshan University 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1998年第2期67-72,共6页
A novel unified method for computing the dynamic load carrying capacity(DLCC) of multiple cooperating robotic manipulators is developed.In this method,the kinematic constraints and the governing dynamic equations of ... A novel unified method for computing the dynamic load carrying capacity(DLCC) of multiple cooperating robotic manipulators is developed.In this method,the kinematic constraints and the governing dynamic equations of the multiple robot system are formulated in the joint space by using the method of transference of dependence from one set of generalized coordinates to another,and the virtual work principle,which includes the readily available dynamics and joint torques of individual manipulators,and the dynamic of payload.Based on this dynamic model,the upper limit of the DLCC at any points on a given trajectory is obtained by solving a small size linear programming problem.This method is conceptually straightforward,and it is applicable also to the cases of multi fingered robot hands and multi legged walking machines. 展开更多
关键词 robotic manipulators Cooperating DYNAMICS Load carrying capacity
全文增补中
Robust Control of Robotic Manipulators in the Task-Space Using an Adaptive Observer Based on Chebyshev Polynomials 被引量:2
17
作者 GHOLIPOUR Reza FATEH Mohammad Mehdi 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2020年第5期1360-1382,共23页
In this paper,an adaptive observer for robust control of robotic manipulators is proposed.The lumped uncertainty is estimated using Chebyshev polynomials.Usually,the uncertainty upper bound is required in designing ob... In this paper,an adaptive observer for robust control of robotic manipulators is proposed.The lumped uncertainty is estimated using Chebyshev polynomials.Usually,the uncertainty upper bound is required in designing observer-controller structures.However,obtaining this bound is a challenging task.To solve this problem,many uncertainty estimation techniques have been proposed in the literature based on neuro-fuzzy systems.As an alternative,in this paper,Chebyshev polynomials have been applied to uncertainty estimation due to their simpler structure and less computational load.Based on strictly-positive-rea Lyapunov theory,the stability of the closed-loop system can be verified.The Chebyshev coefficients are tuned based on the adaptation rules obtained in the stability analysis.Also,to compensate the truncation error of the Chebyshev polynomials,a continuous robust control term is designed while in previous related works,usually a discontinuous term is used.An SCARA manipulator actuated by permanent magnet DC motors is used for computer simulations.Simulation results reveal the superiority of the designed method. 展开更多
关键词 Adaptive observer Chebyshev polynomials electrically driven robot manipulators robust control uncertainty estimation
原文传递
Fault Diagnosis in Robot Manipulators Using SVM and KNN 被引量:1
18
作者 D.Maincer Y.Benmahamed +2 位作者 M.Mansour Mosleh Alharthi Sherif S.M.Ghonein 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1957-1969,共13页
In this paper,Support Vector Machine(SVM)and K-Nearest Neighbor(KNN)based methods are to be applied on fault diagnosis in a robot manipulator.A comparative study between the two classifiers in terms of successfully det... In this paper,Support Vector Machine(SVM)and K-Nearest Neighbor(KNN)based methods are to be applied on fault diagnosis in a robot manipulator.A comparative study between the two classifiers in terms of successfully detecting and isolating the seven classes of sensor faults is considered in this work.For both classifiers,the torque,the position and the speed of the manipulator have been employed as the input vector.However,it is to mention that a large database is needed and used for the training and testing phases.The SVM method used in this paper is based on the Gaussian kernel with the parametersγand the penalty margin parameter“C”,which were adjusted via the PSO algorithm to achieve a maximum accuracy diagnosis.Simulations were carried out on the model of a Selective Compliance Assembly Robot Arm(SCARA)robot manipulator,and the results showed that the Particle Swarm Optimization(PSO)increased the per-formance of the SVM algorithm with the 96.95%accuracy while the KNN algo-rithm achieved a correlation up to 94.62%.These results showed that the SVM algorithm with PSO was more precise than the KNN algorithm when was used in fault diagnosis on a robot manipulator. 展开更多
关键词 Support Vector Machine(SVM) Particle Swarm Optimization(PSO) K-Nearest Neighbor(KNN) fault diagnosis manipulator robot(SCARA)
下载PDF
深海环境海洋生态系统监测与修复新技术 被引量:1
19
作者 Jacopo Aguzzi Laurenz Thomsen +16 位作者 Sascha Flögel Nathan J.Robinson Giacomo Picardi Damianos Chatzievangelou Nixon Bahamon Sergio Stefanni Jordi Grinyó Emanuela Fanelli Cinzia Corinaldesi Joaquin Del Rio Fernandez Marcello Calisti Furu Mienis Elias Chatzidouros Corrado Costa Simona Violino Michael Tangherlini Roberto Danovaro 《Engineering》 SCIE EI CAS CSCD 2024年第3期195-211,共17页
The United Nations(UN)’s call for a decade of“ecosystem restoration”was prompted by the need to address the extensive impact of anthropogenic activities on natural ecosystems.Marine ecosystem restoration is increas... The United Nations(UN)’s call for a decade of“ecosystem restoration”was prompted by the need to address the extensive impact of anthropogenic activities on natural ecosystems.Marine ecosystem restoration is increasingly necessary due to increasing habitat degredation in deep waters(>200 m depth).At these depths,which are far beyond those accessible by divers,only established and emerging robotic platforms such as remotely operated vehicles(ROVs),autonomous underwater vehicles(AUVs),landers,and crawlers can operate through manipulators and multiparametric sensor arrays(e.g.,optoacoustic imaging,omics,and environmental probes).The use of advanced technologies for deep-sea ecosystem restoration can provide:①high-resolution three-dimensional(3D)imaging and acoustic mapping of substrates and key taxa,②physical manipulation of substrates and key taxa,③real-time supervision of remote operations and long-term ecological monitoring,and④the potential to work autonomously.Here,we describe how robotic platforms with in situ manipulation capabilities and payloads of innovative sensors could autonomously conduct active restoration and monitoring across large spatial scales.We expect that these devices will be particularly useful in deep-sea habitats,such as①reef-building cold-water corals,②soft-bottom bamboo corals,and③soft-bottom fishery resources that have already been damaged by offshore industries(i.e.,fishing and oil/gas). 展开更多
关键词 Ecosystem restoration robotic manipulation Acoustic tracking Fishery resources Artificial reefs
下载PDF
FUZZY ADAPTIVE CONTROL OF FLEXIBLE-LINK ROBOT MANIPULATOR 被引量:1
20
作者 倪受东 吴洪涛 +1 位作者 袁祖强 嵇海平 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第3期200-205,共6页
A fuzzy adaptive control method is proposed for a flexible robot manipulator. Due to the structure characteristics of the flexible manipulator, the vibration modes must be controlled to realize the high-precision tip ... A fuzzy adaptive control method is proposed for a flexible robot manipulator. Due to the structure characteristics of the flexible manipulator, the vibration modes must be controlled to realize the high-precision tip position. The Lagrangian principle is utilized to model the dynamic function of the single-degree flexible manipulator incorporating the assumed modes method. Simulation results of the fuzzy adaptive control method in the location control and the trajectory tracking with different tip disturbances are presented and compared with the results of the classic PD control. It shows that the controller can obtain the stable and robust performance. 展开更多
关键词 flexible robot manipulator Lagrangian function assumed mode method fuzzy adaptive control
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部