Variable Stiffness Actuation(VSA)is an efficient,safe,and robust actuation technology for bionic robotic joints that have emerged in recent decades.By introducing a variable stiffness elastomer in the actuation system...Variable Stiffness Actuation(VSA)is an efficient,safe,and robust actuation technology for bionic robotic joints that have emerged in recent decades.By introducing a variable stiffness elastomer in the actuation system,the mechanical-electric energy conversion between the motor and the load could be adjusted on-demand,thereby improving the performance of the actuator,such as the peak power reduction,energy saving,bionic actuation,etc.At present,the VSA technology has achieved fruitful research results in designing the actuator mechanism and the stiffness adjustment servo,which has been widely applied in articulated robots,exoskeletons,prostheses,etc.However,how to optimally control the stiffness of VSAs in different application scenarios for better actuator performance is still challenging,where there is still a lack of unified cognition and viewpoints.Therefore,from the perspective of optimal VSA performance,this paper first introduces some typical structural design and servo control techniques of common VSAs and then explains the methods and applications of the Optimal Variable Stiffness Control(OVSC)approaches by theoretically introducing different types of OVSC mathematical models and summarizing OVSC methods with varying optimization goals and application scenarios or cases.In addition,the current research challenges of OVSC methods and possible innovative insights are also presented and discussed in-depth to facilitate the future development of VSA control.展开更多
The existing kinematic parameter calibration method cannot further improve the absolute positioning accuracy of the robot due to the uncertainty of positioning error caused by robot joint backlash.In view of this prob...The existing kinematic parameter calibration method cannot further improve the absolute positioning accuracy of the robot due to the uncertainty of positioning error caused by robot joint backlash.In view of this problem,a closed‑loop feedback accuracy compensation method for robot joints was proposed.Firstly,a Chebyshev polynomial error estimation model was established which took geometric error and non‑geometric error into account.In addition,the absolute linear grating scale was installed at each joint of the robot and the positioning error of the robot end was mapped to the joint angle.And the joint angle corrected value was obtained.Furthermore,the closed‑loop feedback of robot joints was established to realize the online correction of the positioning error.Finally,an experiment on the KUKA KR210 industrial robot was conducted to demonstrate the effectiveness of the method.The result shows that the maximum absolute positioning error of the robot is reduced by 75%from 0.76 mm to 0.19 mm.This method can compensate the robot joint backlash effectively and further improve the absolute positioning accuracy of the robot.展开更多
To meet the requirements of high performance, low cost, and easy operation of the robot, a brushless motor drive and control system for the robot joint is designed, including CAN bus, WPF upper host computer developme...To meet the requirements of high performance, low cost, and easy operation of the robot, a brushless motor drive and control system for the robot joint is designed, including CAN bus, WPF upper host computer development, and magnetic encoders, and other sensors, in which the STM32 F103 chip is used as the main control chip, and the DRV8323 is a brushless motor drive chip. The principle of field-oriented control(FOC) brushless motor drive is elaborated.Meanwhile, the drive and control system design is completed from both hardware and software aspects. Finally, the PID algorithm is used for the closed-loop speed test of the robot joint. The experimental result shows that the designed robot joints and control system run smoothly and reliably, have the characteristics of modularization and miniaturization, and are suitable for the control of micro-service robots and manipulators.展开更多
A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Compar...A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.展开更多
An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both v...An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both vibration suppression mode,where FJR tracks the desired position with little vibration,and compliance mode,in which FJR presents passive.Instead of designing multiple controllers and switching between them,both modes are integrated into a single controller,and the transition between two modes is smooth and stable.The stability of the closed-loop system is theoretically proven via the Lyapunov method,with the considering the dynamics uncertainties in both link side and motor side.Simulation results are presented to illustrate good performances of the proposed control scheme.展开更多
A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal m...A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal model in our work,based on which the describing function was analyzed in frequency domain,and the weighting function of nonlinear friction was further calculated as well. By combining the friction uncertainty,the mixed sensitivity H∞optimization was proposed as the benchmark for controller design, which also leaded to good performance of robustness. Furthermore,unstructured perturbation to the system was analyzed so that the stability was guaranteed. Simulation results show that the proposed controller can provide excellent tracking and regulation performance.展开更多
To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction ...To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction under the direct torque control system of brushless DC motor. First,the arm joint of the humanoid robot is modelled. Then the speed controller model and the influence of the initial value of the integral element on the system are analyzed. On the basis of the traditional antiwindup controller,an integral state estimator is set up. Under the condition of different load torques and the given speed,the integral steady-state value is estimated. Therefore the accumulation of the speed error terminates when the integrator reaches saturation. Then the predicted integral steady-state value is used as the initial value of the regulator to enter the linear region to make the system achieve the purpose of anti-windup. The simulation results demonstrate that the control strategy for the humanoid robot arm joint based on integral state prediction can play the role of anti-windup and suppress the overshoot of the system effectively. The system has a good dynamic performance.展开更多
Passivity-based controllers are widely used to facilitate physical interaction between humans and elastic joint robots,as they enhance the stability of the interaction system.However,the joint position tracking perfor...Passivity-based controllers are widely used to facilitate physical interaction between humans and elastic joint robots,as they enhance the stability of the interaction system.However,the joint position tracking performance can be limited by the structures of these controllers when the system is faced with uncertainties and rough high-order system state measurements(such as joint accelerations and jerks).This study presents a variable structure passivity(VSP)control method for joint position tracking of elastic joint robots,which combines the advantages of passive control and variable structure control.This method ensures the tracking error converges in a finite time,even when the system faces uncertainties.The method also preserves the passivity of the system.Moreover,a cascaded observer,called CHOSSO,is also proposed to accurately estimate high-order system states,relying only on position and velocity signals.This observer allows independent implementation of disturbance compensation in the acceleration and jerk estimation channels.In particular,the observer has an enhanced ability to handle fast time-varying disturbances in physical human-robot interaction.The effectiveness of the proposed method is verified through simulations and experiments on a lower limb rehabilitation robot equipped with elastic joints.展开更多
Focusing on the ball double-screw hydraulic knee joint as the research object,this paper analyzes the load driving performance of the hydraulic knee joint.Taking the posture data of the human body such as walking,squa...Focusing on the ball double-screw hydraulic knee joint as the research object,this paper analyzes the load driving performance of the hydraulic knee joint.Taking the posture data of the human body such as walking,squatting and landing buffer as initial learning objects,motion features are extracted.By simplifying the trajectories of different motion actions into key feature control points and flexible trajectory fitting,the trajectory of joint actions is optimized.This method can realize the adaptability of the hydraulic robot knee joint in different movements,and take the flexible action as the optimization goal under the condition of ensuring the movement performance,so as to reduce the damage to the knee joint caused by the foot impact in motion.The simulation model was built by Adams and Matlab to complete the performance analysis and motion optimization experiment of the knee joint.The simulation results show that the foot impact force of the experimental model decreases gradually through optimization.Finally,the method is applied to the hydraulic joint experimental prototype to prove its load capacity and flexible motion control performance.展开更多
A robust neuro-adaptive controller for uncertain flexible joint robots is presented. This control scheme integrates H^infinity disturbance attenuation design and recurrent neural network adaptive control technique int...A robust neuro-adaptive controller for uncertain flexible joint robots is presented. This control scheme integrates H^infinity disturbance attenuation design and recurrent neural network adaptive control technique into the dy- namic surface control framework. Two recurrent neural networks are used to adaptively learn the uncertain functions in a flexible joint robot. Then, the effects of approximation error and filter error on the tracking performance are attenuated to a prescribed level by the embedded H-infinity controller, so that the desired H-infinity tracking performance can be achieved. Finally. simulation results verifv the effectiveness of the nronosed control scheme.展开更多
The adaptive tracking problem for uncertain flexible joint robot system is studied in this paper. By utilizing the adaptive backstepping method, an adaptive controller is constructed at the beginning. By utilizing the...The adaptive tracking problem for uncertain flexible joint robot system is studied in this paper. By utilizing the adaptive backstepping method, an adaptive controller is constructed at the beginning. By utilizing the modified adaptive dynamic surface control technique, a new adaptive controller is presented afterwards to avoid the overparametrization problem and the explosion of complexity problem existing in the adaptive backstepping method. All the signals of the closed-loop system are rendered globally/semi-globally uniformly ultimately bounded, and the tracking error can be made arbitrarily small by tuning the designed parameters. A simulation example is given to show the validity of the control algorithm.展开更多
基金National Key Research and Development Program of China[Grant No.2020YFB1313000]National Natural Science Foundation of China[Grant No.62003060,62101086,51975070]+2 种基金China Postdoctoral Science Foundation[2021M693769]Natural Science Foundation of Chongqing,China[Grant No.cstc2021jcyj-bsh0180]Scientific and Technological Research Program of Chongqing Municipal Education Commission[Grant No.KJQN202100648].
文摘Variable Stiffness Actuation(VSA)is an efficient,safe,and robust actuation technology for bionic robotic joints that have emerged in recent decades.By introducing a variable stiffness elastomer in the actuation system,the mechanical-electric energy conversion between the motor and the load could be adjusted on-demand,thereby improving the performance of the actuator,such as the peak power reduction,energy saving,bionic actuation,etc.At present,the VSA technology has achieved fruitful research results in designing the actuator mechanism and the stiffness adjustment servo,which has been widely applied in articulated robots,exoskeletons,prostheses,etc.However,how to optimally control the stiffness of VSAs in different application scenarios for better actuator performance is still challenging,where there is still a lack of unified cognition and viewpoints.Therefore,from the perspective of optimal VSA performance,this paper first introduces some typical structural design and servo control techniques of common VSAs and then explains the methods and applications of the Optimal Variable Stiffness Control(OVSC)approaches by theoretically introducing different types of OVSC mathematical models and summarizing OVSC methods with varying optimization goals and application scenarios or cases.In addition,the current research challenges of OVSC methods and possible innovative insights are also presented and discussed in-depth to facilitate the future development of VSA control.
基金supported by the National Natural Science Foundation of China(Nos.51875287, 52075250)the Special Fund for Transformation of Scientific,and Technological Achievements of Jiangsu Province(No.BA2018053)
文摘The existing kinematic parameter calibration method cannot further improve the absolute positioning accuracy of the robot due to the uncertainty of positioning error caused by robot joint backlash.In view of this problem,a closed‑loop feedback accuracy compensation method for robot joints was proposed.Firstly,a Chebyshev polynomial error estimation model was established which took geometric error and non‑geometric error into account.In addition,the absolute linear grating scale was installed at each joint of the robot and the positioning error of the robot end was mapped to the joint angle.And the joint angle corrected value was obtained.Furthermore,the closed‑loop feedback of robot joints was established to realize the online correction of the positioning error.Finally,an experiment on the KUKA KR210 industrial robot was conducted to demonstrate the effectiveness of the method.The result shows that the maximum absolute positioning error of the robot is reduced by 75%from 0.76 mm to 0.19 mm.This method can compensate the robot joint backlash effectively and further improve the absolute positioning accuracy of the robot.
基金Project(51805368) supported by the National Natural Science Foundation of ChinaProject(2018QNRC001) supported by the Young Elite Scientists Sponsorship Program by China Association for Science and TechnologyProject(DMETKF2021017) supported by Open Fund of State Key Laboratory of Digital Manufacturing Equipment and Technology,Huazhong University of Science and Technology,China。
文摘To meet the requirements of high performance, low cost, and easy operation of the robot, a brushless motor drive and control system for the robot joint is designed, including CAN bus, WPF upper host computer development, and magnetic encoders, and other sensors, in which the STM32 F103 chip is used as the main control chip, and the DRV8323 is a brushless motor drive chip. The principle of field-oriented control(FOC) brushless motor drive is elaborated.Meanwhile, the drive and control system design is completed from both hardware and software aspects. Finally, the PID algorithm is used for the closed-loop speed test of the robot joint. The experimental result shows that the designed robot joints and control system run smoothly and reliably, have the characteristics of modularization and miniaturization, and are suitable for the control of micro-service robots and manipulators.
基金Project(2006AA04Z228) supported by the National High-Tech Research and Development Program of ChinaProject(PCSIRT) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.
基金supported by the National Key R&D Program of China(No.2017YFB1300400)the National Natural Science Foundation of China(No. 51805107)
文摘An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both vibration suppression mode,where FJR tracks the desired position with little vibration,and compliance mode,in which FJR presents passive.Instead of designing multiple controllers and switching between them,both modes are integrated into a single controller,and the transition between two modes is smooth and stable.The stability of the closed-loop system is theoretically proven via the Lyapunov method,with the considering the dynamics uncertainties in both link side and motor side.Simulation results are presented to illustrate good performances of the proposed control scheme.
基金National Natural Science Foundation of China(No.61273339)
文摘A robust controller method for flexible joint robot considering the effect caused by nonlinear friction was presented.The nonlinear friction was denoted as inverse additive output uncertainty relative to the nominal model in our work,based on which the describing function was analyzed in frequency domain,and the weighting function of nonlinear friction was further calculated as well. By combining the friction uncertainty,the mixed sensitivity H∞optimization was proposed as the benchmark for controller design, which also leaded to good performance of robustness. Furthermore,unstructured perturbation to the system was analyzed so that the stability was guaranteed. Simulation results show that the proposed controller can provide excellent tracking and regulation performance.
基金Supported by the National Natural Science Foundation of China(61175090,61703249)Shandong Provincial Natural Science Foundation,China(ZR2017MF045)
文摘To address the problems of torque limit and controller saturation in the control of robot arm joint,an anti-windup control strategy is proposed for a humanoid robot arm,which is based on the integral state prediction under the direct torque control system of brushless DC motor. First,the arm joint of the humanoid robot is modelled. Then the speed controller model and the influence of the initial value of the integral element on the system are analyzed. On the basis of the traditional antiwindup controller,an integral state estimator is set up. Under the condition of different load torques and the given speed,the integral steady-state value is estimated. Therefore the accumulation of the speed error terminates when the integrator reaches saturation. Then the predicted integral steady-state value is used as the initial value of the regulator to enter the linear region to make the system achieve the purpose of anti-windup. The simulation results demonstrate that the control strategy for the humanoid robot arm joint based on integral state prediction can play the role of anti-windup and suppress the overshoot of the system effectively. The system has a good dynamic performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.91648112,52375506)。
文摘Passivity-based controllers are widely used to facilitate physical interaction between humans and elastic joint robots,as they enhance the stability of the interaction system.However,the joint position tracking performance can be limited by the structures of these controllers when the system is faced with uncertainties and rough high-order system state measurements(such as joint accelerations and jerks).This study presents a variable structure passivity(VSP)control method for joint position tracking of elastic joint robots,which combines the advantages of passive control and variable structure control.This method ensures the tracking error converges in a finite time,even when the system faces uncertainties.The method also preserves the passivity of the system.Moreover,a cascaded observer,called CHOSSO,is also proposed to accurately estimate high-order system states,relying only on position and velocity signals.This observer allows independent implementation of disturbance compensation in the acceleration and jerk estimation channels.In particular,the observer has an enhanced ability to handle fast time-varying disturbances in physical human-robot interaction.The effectiveness of the proposed method is verified through simulations and experiments on a lower limb rehabilitation robot equipped with elastic joints.
基金supported by the Top Discipline Plan of Shanghai Universities-Class I,the National Natural Science Foundation of China(52205279)the China National Postdoctoral Program for Innovative Talents(BX20190242)+1 种基金the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(GZKF-202017)the Open Foundation of the National Engineering Technology Research Center for Prefabrication Construction in Civil Engineering(2021CPCCE-K02).
文摘Focusing on the ball double-screw hydraulic knee joint as the research object,this paper analyzes the load driving performance of the hydraulic knee joint.Taking the posture data of the human body such as walking,squatting and landing buffer as initial learning objects,motion features are extracted.By simplifying the trajectories of different motion actions into key feature control points and flexible trajectory fitting,the trajectory of joint actions is optimized.This method can realize the adaptability of the hydraulic robot knee joint in different movements,and take the flexible action as the optimization goal under the condition of ensuring the movement performance,so as to reduce the damage to the knee joint caused by the foot impact in motion.The simulation model was built by Adams and Matlab to complete the performance analysis and motion optimization experiment of the knee joint.The simulation results show that the foot impact force of the experimental model decreases gradually through optimization.Finally,the method is applied to the hydraulic joint experimental prototype to prove its load capacity and flexible motion control performance.
基金supported by the National Natural Science Foundation of China(Nos.60835004,61175075)the Hunan Provincial Innovation Foundation for Postgraduate(No.CX2012B147)
文摘A robust neuro-adaptive controller for uncertain flexible joint robots is presented. This control scheme integrates H^infinity disturbance attenuation design and recurrent neural network adaptive control technique into the dy- namic surface control framework. Two recurrent neural networks are used to adaptively learn the uncertain functions in a flexible joint robot. Then, the effects of approximation error and filter error on the tracking performance are attenuated to a prescribed level by the embedded H-infinity controller, so that the desired H-infinity tracking performance can be achieved. Finally. simulation results verifv the effectiveness of the nronosed control scheme.
基金supported by National Natural Science Foundation of China(No.61273091)the Project of Taishan Scholar of Shandong Provincethe Ph.D.Programs Foundation of Ministry of Education of China
文摘The adaptive tracking problem for uncertain flexible joint robot system is studied in this paper. By utilizing the adaptive backstepping method, an adaptive controller is constructed at the beginning. By utilizing the modified adaptive dynamic surface control technique, a new adaptive controller is presented afterwards to avoid the overparametrization problem and the explosion of complexity problem existing in the adaptive backstepping method. All the signals of the closed-loop system are rendered globally/semi-globally uniformly ultimately bounded, and the tracking error can be made arbitrarily small by tuning the designed parameters. A simulation example is given to show the validity of the control algorithm.