期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
A Novel Disturbance Observer Based Fixed-Time Sliding Mode Control for Robotic Manipulators With Global Fast Convergence
1
作者 Dan Zhang Jiabin Hu +2 位作者 Jun Cheng Zheng-Guang Wu Huaicheng Yan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期661-672,共12页
This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th... This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance. 展开更多
关键词 Disturbance observer(DO) fixed-time non-singular sliding mode control robotic manipulator trajectory tracking
下载PDF
Adaptive Fuzzy Backstepping Tracking Control for Flexible Robotic Manipulator 被引量:14
2
作者 Wanmin Chang Yongming Li Shaocheng Tong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第12期1923-1930,共8页
In this paper,an adaptive fuzzy state feedback control method is proposed for the single-link robotic manipulator system.The considered system contains unknown nonlinearfunction and actuator saturation.Fuzzy logic sys... In this paper,an adaptive fuzzy state feedback control method is proposed for the single-link robotic manipulator system.The considered system contains unknown nonlinearfunction and actuator saturation.Fuzzy logic systems(FLSs)and a smooth function are used to approximate the unknownnonlinearities and the actuator saturation,respectively.By com-bining the command-filter technique with the backsteppingdesign algorithm,a novel adaptive fuuzy tracking backsteppingcontrol method is developed.It is proved that the adaptive fuuzycontrol scheme can guarantee that all the variables in the closed-loop system are bounded,and the system output can track thegiven reference signal as close as possible.Simulation results areprovided to illustrate the effectiveness of the proposed approach. 展开更多
关键词 Actuator saturation backstepping design command-filter technique flexible robotic manipulator fuzzy adaptive control
下载PDF
Neural-network-based two-loop control of robotic manipulators including actuator dynamics in task space 被引量:3
3
作者 Liangyong WANG Tianyou CHAI Zheng FANG 《控制理论与应用(英文版)》 EI 2009年第2期112-118,共7页
A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task sp... A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task space. It provides a joint velocity reference signal to the inner one. The inner loop implements a velocity servo loop at the robot joint level. A radial basis function network (RBFN) is integrated with proportional-integral (PI) control to construct a velocity tracking control scheme for the inner loop. Finally, a prototype technology based control system is designed for a robotic manipulator. The proposed control scheme is applied to the robotic manipulator. Experimental results confirm the validity of the proposed control scheme by comparing it with other control strategies. 展开更多
关键词 robotic manipulator Motion control Neural network Task space
下载PDF
Development of a Stereo Vision-based Pick and Place System for Robotic Manipulators 被引量:2
4
作者 Thakshila THILAKANAYAKE Nirasha HERATH Migara LIYANAGE 《Instrumentation》 2021年第2期1-13,共13页
Conventional robotic manipulators consist of touch and vision sensors in order to pick and place differently shaped objects.Due to the technology development and degrading sensors over a long period,the stereo vision ... Conventional robotic manipulators consist of touch and vision sensors in order to pick and place differently shaped objects.Due to the technology development and degrading sensors over a long period,the stereo vision technique has become a promising alternative.In this study,a low-cost stereo vision-based system,and a gripper to be placed at the end of the robot arm(Fanuc M10 iA/12)are developed for position and orientation estimation of robotic manipulators to pick and place different shaped objects.The stereo vision system developed in this research is used to estimate the position(X,Y,Z),orientation(P_(y))of the Center of Volume of four standard objects(cube,cuboid,cylinder,and sphere)whereas the robot arm with the gripper is used to mechanically pick and place the objects.The stereo vision system is placed on the movable robot arm,and it consists of two cameras to capture two 2D views of a stationary object to derive 3D depth information in 3D space.Moreover,a graphical user interface is developed to train a linear regression model,live predict the coordinates of the objects,and check the accuracy of the predicted data.The graphical user interface can also send predicted coordinates and angles to the gripper and the robot arm.The project is facilitated with python programming language modules and image processing techniques.Identification of the stationary object and estimation of its coordinates is done using image processing techniques.The final product can be identified as a device that converts conventional robot arms without an image processing vision system into a highly precise and accurate robot arm with an image processing vision system.Experimental studies are performed to test the efficiency and effectiveness of used techniques and the gripper prototype.Necessary actions are taken to minimize the errors in position and orientation estimation.In addition,as a future implementation,an embedded system will be developed with a user-friendly software interface to install the vision system into the Fanuc M10 iA/12 robot arm and will upgrade the system to a device that can be implemented with any kind of customized robot arms available in the industry. 展开更多
关键词 Stereo Vision Image Processing robotic manipulators
下载PDF
Takagi–Sugeno Fuzzy Modeling and Control for Effective Robotic Manipulator Motion 被引量:1
5
作者 Izzat Al-Darraji Ayad AKakei +5 位作者 Ayad Ghany Ismaeel Georgios Tsaramirsis Fazal Qudus Khan Princy Randhawa Muath Alrammal Sadeeq Jan 《Computers, Materials & Continua》 SCIE EI 2022年第4期1011-1024,共14页
Robotic manipulators are widely used in applications that require fast and precise motion.Such devices,however,are prompt to nonlinear control issues due to the flexibility in joints and the friction in the motors wit... Robotic manipulators are widely used in applications that require fast and precise motion.Such devices,however,are prompt to nonlinear control issues due to the flexibility in joints and the friction in the motors within the dynamics of their rigid part.To address these issues,the Linear Matrix Inequalities(LMIs)and Parallel Distributed Compensation(PDC)approaches are implemented in the Takagy–Sugeno Fuzzy Model(T-SFM).We propose the following methodology;initially,the state space equations of the nonlinear manipulator model are derived.Next,a Takagy–Sugeno Fuzzy Model(T-SFM)technique is used for linearizing the state space equations of the nonlinear manipulator.The T-SFM controller is developed using the Parallel Distributed Compensation(PDC)method.The prime concept of the designed controller is to compensate for all the fuzzy rules.Furthermore,the Linear Matrix Inequalities(LMIs)are applied to generate adequate cases to ensure stability and control.Convex programming methods are applied to solve the developed LMIs problems.Simulations developed for the proposed model show that the proposed controller stabilized the system with zero tracking error in less than 1.5 s. 展开更多
关键词 Nonlinear robot manipulator precise fast robot motion flexible joints motor friction Takagy-Sugeno fuzzy control modeling nonlinear flexible robot system
下载PDF
ANALYTICAL MODEL ALGORITHM FOR DYNAMICS OF ROBOTIC MANIPULATORS 被引量:6
6
作者 Xu Liju Fan ShouwenChengdu University of Science and TechnologyChen YongSouthwest Jiaotong University 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1995年第2期168-171,共4页
A simple analytical model method for dynamics of robotic manipulators is proposed.Problem of deriving model matrix elements is transformed into problem of solving for driving forceand driving torque under specified co... A simple analytical model method for dynamics of robotic manipulators is proposed.Problem of deriving model matrix elements is transformed into problem of solving for driving forceand driving torque under specified condition by recursive dynamic equations. Expressions of reaction force in arbitrary joint in numeric-symbolic form are also derived. The properties of modelmatrices are given. Corresponding software which can recognize and manipulate symbols is developed and can be used to generate model and real-time code of robotic dynamics. 展开更多
关键词 robotic manipulator Analytical model
下载PDF
FINITE TIME TRACKING CONTROL FOR RIGID ROBOTIC MANIPULATORS WITH FRICTION AND EXTERNAL DISTURBANCES
7
作者 GuangdengZONG YuqiangWU LihuaZHANG 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2005年第1期115-125,共11页
关键词 Finite time convergence switch control singularity problem robotic manipulator systems
原文传递
Task-Space Tracking Control of Robotic Manipulator Via Intermittent Controller
8
作者 MA Mihua CAI Jianping 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2022年第6期2248-2262,共15页
An intermittent controller for robotic manipulator in task space was developed in this paper.In task space,for given a desired time-varying trajectory,the robot end-effector can track the desired target under the desi... An intermittent controller for robotic manipulator in task space was developed in this paper.In task space,for given a desired time-varying trajectory,the robot end-effector can track the desired target under the designed intermittent controller.Different from most of the existing works on control of robotic manipulator,the intermittent control for robotic manipulator is discussed in task space instead of joint space.Besides,the desired trajectory can be time-varying and not limited to constant.As a direct application,the authors implemented the proposed controller on tracking of a two-link robotic manipulator in task space.Numerical simulations demonstrate the effectiveness and feasibility of the proposed intermittent control strategy. 展开更多
关键词 Intermittent controller robotic manipulator task-space tracking
原文传递
Recursive recurrent neural network:A novel model for manipulator control with different levels of physical constraints
9
作者 Zhan Li Shuai Li 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期622-634,共13页
Manipulators actuate joints to let end effectors to perform precise path tracking tasks.Recurrent neural network which is described by dynamic models with parallel processing capability,is a powerful tool for kinemati... Manipulators actuate joints to let end effectors to perform precise path tracking tasks.Recurrent neural network which is described by dynamic models with parallel processing capability,is a powerful tool for kinematic control of manipulators.Due to physical limitations and actuation saturation of manipulator joints,the involvement of joint constraints for kinematic control of manipulators is essential and critical.However,current existing manipulator control methods based on recurrent neural networks mainly handle with limited levels of joint angular constraints,and to the best of our knowledge,methods for kinematic control of manipulators with higher order joint constraints based on recurrent neural networks are not yet reported.In this study,for the first time,a novel recursive recurrent network model is proposed to solve the kinematic control issue for manipulators with different levels of physical constraints,and the proposed recursive recurrent neural network can be formulated as a new manifold system to ensure control solution within all of the joint constraints in different orders.The theoretical analysis shows the stability and the purposed recursive recurrent neural network and its convergence to solution.Simulation results further demonstrate the effectiveness of the proposed method in end‐effector path tracking control under different levels of joint constraints based on the Kuka manipulator system.Comparisons with other methods such as the pseudoinverse‐based method and conventional recurrent neural network method substantiate the superiority of the proposed method. 展开更多
关键词 dynamic neural networks recursive computation robotic manipulator
下载PDF
Robust Control of Robotic Manipulators in the Task-Space Using an Adaptive Observer Based on Chebyshev Polynomials 被引量:2
10
作者 GHOLIPOUR Reza FATEH Mohammad Mehdi 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2020年第5期1360-1382,共23页
In this paper,an adaptive observer for robust control of robotic manipulators is proposed.The lumped uncertainty is estimated using Chebyshev polynomials.Usually,the uncertainty upper bound is required in designing ob... In this paper,an adaptive observer for robust control of robotic manipulators is proposed.The lumped uncertainty is estimated using Chebyshev polynomials.Usually,the uncertainty upper bound is required in designing observer-controller structures.However,obtaining this bound is a challenging task.To solve this problem,many uncertainty estimation techniques have been proposed in the literature based on neuro-fuzzy systems.As an alternative,in this paper,Chebyshev polynomials have been applied to uncertainty estimation due to their simpler structure and less computational load.Based on strictly-positive-rea Lyapunov theory,the stability of the closed-loop system can be verified.The Chebyshev coefficients are tuned based on the adaptation rules obtained in the stability analysis.Also,to compensate the truncation error of the Chebyshev polynomials,a continuous robust control term is designed while in previous related works,usually a discontinuous term is used.An SCARA manipulator actuated by permanent magnet DC motors is used for computer simulations.Simulation results reveal the superiority of the designed method. 展开更多
关键词 Adaptive observer Chebyshev polynomials electrically driven robot manipulators robust control uncertainty estimation
原文传递
NEW APPROACHES FOR COMPUTING DYNAMIC LOAD-CARRYING CAPACITY OF MULTIPLE COOPERATING ROBOTIC MANIPULATORS
11
作者 Yang Yulin Lu Ling Zhao Yongsheng Zhou Yulin Yanshan University 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1998年第2期67-72,共6页
A novel unified method for computing the dynamic load carrying capacity(DLCC) of multiple cooperating robotic manipulators is developed.In this method,the kinematic constraints and the governing dynamic equations of ... A novel unified method for computing the dynamic load carrying capacity(DLCC) of multiple cooperating robotic manipulators is developed.In this method,the kinematic constraints and the governing dynamic equations of the multiple robot system are formulated in the joint space by using the method of transference of dependence from one set of generalized coordinates to another,and the virtual work principle,which includes the readily available dynamics and joint torques of individual manipulators,and the dynamic of payload.Based on this dynamic model,the upper limit of the DLCC at any points on a given trajectory is obtained by solving a small size linear programming problem.This method is conceptually straightforward,and it is applicable also to the cases of multi fingered robot hands and multi legged walking machines. 展开更多
关键词 robotic manipulators Cooperating Dynamics Load carrying capacity
全文增补中
Fault Diagnosis in Robot Manipulators Using SVM and KNN
12
作者 D.Maincer Y.Benmahamed +2 位作者 M.Mansour Mosleh Alharthi Sherif S.M.Ghonein 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1957-1969,共13页
In this paper,Support Vector Machine(SVM)and K-Nearest Neighbor(KNN)based methods are to be applied on fault diagnosis in a robot manipulator.A comparative study between the two classifiers in terms of successfully det... In this paper,Support Vector Machine(SVM)and K-Nearest Neighbor(KNN)based methods are to be applied on fault diagnosis in a robot manipulator.A comparative study between the two classifiers in terms of successfully detecting and isolating the seven classes of sensor faults is considered in this work.For both classifiers,the torque,the position and the speed of the manipulator have been employed as the input vector.However,it is to mention that a large database is needed and used for the training and testing phases.The SVM method used in this paper is based on the Gaussian kernel with the parametersγand the penalty margin parameter“C”,which were adjusted via the PSO algorithm to achieve a maximum accuracy diagnosis.Simulations were carried out on the model of a Selective Compliance Assembly Robot Arm(SCARA)robot manipulator,and the results showed that the Particle Swarm Optimization(PSO)increased the per-formance of the SVM algorithm with the 96.95%accuracy while the KNN algo-rithm achieved a correlation up to 94.62%.These results showed that the SVM algorithm with PSO was more precise than the KNN algorithm when was used in fault diagnosis on a robot manipulator. 展开更多
关键词 Support Vector Machine(SVM) Particle Swarm Optimization(PSO) K-Nearest Neighbor(KNN) fault diagnosis manipulator robot(SCARA)
下载PDF
深海环境海洋生态系统监测与修复新技术
13
作者 Jacopo Aguzzi Laurenz Thomsen +16 位作者 Sascha Flögel Nathan J.Robinson Giacomo Picardi Damianos Chatzievangelou Nixon Bahamon Sergio Stefanni Jordi Grinyó Emanuela Fanelli Cinzia Corinaldesi Joaquin Del Rio Fernandez Marcello Calisti Furu Mienis Elias Chatzidouros Corrado Costa Simona Violino Michael Tangherlini Roberto Danovaro 《Engineering》 SCIE EI CAS CSCD 2024年第3期195-211,共17页
The United Nations(UN)’s call for a decade of“ecosystem restoration”was prompted by the need to address the extensive impact of anthropogenic activities on natural ecosystems.Marine ecosystem restoration is increas... The United Nations(UN)’s call for a decade of“ecosystem restoration”was prompted by the need to address the extensive impact of anthropogenic activities on natural ecosystems.Marine ecosystem restoration is increasingly necessary due to increasing habitat degredation in deep waters(>200 m depth).At these depths,which are far beyond those accessible by divers,only established and emerging robotic platforms such as remotely operated vehicles(ROVs),autonomous underwater vehicles(AUVs),landers,and crawlers can operate through manipulators and multiparametric sensor arrays(e.g.,optoacoustic imaging,omics,and environmental probes).The use of advanced technologies for deep-sea ecosystem restoration can provide:①high-resolution three-dimensional(3D)imaging and acoustic mapping of substrates and key taxa,②physical manipulation of substrates and key taxa,③real-time supervision of remote operations and long-term ecological monitoring,and④the potential to work autonomously.Here,we describe how robotic platforms with in situ manipulation capabilities and payloads of innovative sensors could autonomously conduct active restoration and monitoring across large spatial scales.We expect that these devices will be particularly useful in deep-sea habitats,such as①reef-building cold-water corals,②soft-bottom bamboo corals,and③soft-bottom fishery resources that have already been damaged by offshore industries(i.e.,fishing and oil/gas). 展开更多
关键词 Ecosystem restoration robotic manipulation Acoustic tracking Fishery resources Artificial reefs
下载PDF
Intelligent Robust Control of Redundant Smart Robotic Arm Pt I: Soft Computing KB Optimizer - Deep Machine Learning IT
14
作者 Alena V.Nikolaeva Sergey V.Ulyanov 《Artificial Intelligence Advances》 2020年第1期31-58,共28页
Redundant robotic arm models as a control object discussed.Background of computational intelligence IT on soft computing optimizer of knowledge base in smart robotic manipulators introduced.Soft computing optimizer is... Redundant robotic arm models as a control object discussed.Background of computational intelligence IT on soft computing optimizer of knowledge base in smart robotic manipulators introduced.Soft computing optimizer is the sophisticated computational intelligence toolkit of deep machine learning SW platform with optimal fuzzy neural network structure.The methods for development and design technology of control systems based on soft computing introduced in this Part 1 allow one to implement the principle of design an optimal intelligent control systems with a maximum reliability and controllability level of a complex control object under conditions of uncertainty in the source data,and in the presence of stochastic noises of various physical and statistical characters.The knowledge bases formed with the application of soft computing optimizer produce robust control laws for the schedule of time dependent coefficient gains of conventional PID controllers for a wide range of external perturbations and are maximally insensitive to random variations of the structure of control object.The robustness is achieved by application a vector fitness function for genetic algorithm,whose one component describes the physical principle of minimum production of generalized entropy both in the control object and the control system,and the other components describe conventional control objective functionals such as minimum control error,etc.The application of soft computing technologies(Part I)for the development a robust intelligent control system that solving the problem of precision positioning redundant(3DOF and 7 DOF)manipulators considered.Application of quantum soft computing in robust intelligent control of smart manipulators in Part II described. 展开更多
关键词 Intelligent control system Knowledge base Soft computing technology DECOMPOSITION Redundant robotic manipulator
下载PDF
Optimum Selection of Mechanism Type for Heavy Manipulators Based on Particle Swarm Optimization Method 被引量:3
15
作者 ZHAO Yong CHEN Genliang +1 位作者 WANG Hao LIN Zhongqin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期763-770,共8页
The mechanism type plays a decisive role in the mechanical performance of robotic manipulators. Feasible mechanism types can be obtained by applying appropriate type synthesis theory, but there is still a lack of effe... The mechanism type plays a decisive role in the mechanical performance of robotic manipulators. Feasible mechanism types can be obtained by applying appropriate type synthesis theory, but there is still a lack of effective and efficient methods for the optimum selection among different types of mechanism candidates. This paper presents a new strategy for the purpose of optimum mechanism type selection based on the modified particle swarm optimization method. The concept of sub-swarm is introduced to represent the different mechanisms generated by the type synthesis, and a competitive mechanism is employed between the sub-swarms to reassign their population size according to the relative performances of the mechanism candidates to implement the optimization. Combining with a modular modeling approach for fast calculation of the performance index of the potential candidates, the proposed method is applied to determine the optimum mechanism type among the potential candidates for the desired manipulator. The effectiveness and efficiency of the proposed method is demonstrated through a case study on the optimum selection of mechanism type of a heavy manipulator where six feasible candidates are considered with force capability as the specific performance index. The optimization result shows that the fitness of the optimum mechanism type for the considered heavy manipulator can be up to 0.578 5. This research provides the instruction in optimum selection of mechanism types for robotic manipulators. 展开更多
关键词 robot manipulators performance analysis type selection particle swarm optimization
下载PDF
CONTROLLING ROBOT MANIPULATORS BY DYNAMIC PROGRAMMING 被引量:1
16
作者 MarcJ.Richard 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1995年第1期20-33,共14页
A certain number of considerations should be taken into account in the dynamic control of robot manipulators as highly complex non-linear systems.In this article,we provide a detailed presentation of the mechanical an... A certain number of considerations should be taken into account in the dynamic control of robot manipulators as highly complex non-linear systems.In this article,we provide a detailed presentation of the mechanical and electrical impli- cations of robots equipped with DC motor actuators.This model takes into account all non-linear aspects of the system.Then,we develop computational algorithms for optimal control based on dynamic programming.The robot's trajectory must be predefined,but performance criteria and constraints applying to the system are not limited and we may adapt them freely to the robot and the task being studied.As an example,a manipulator arm with 3 degrees of freedom is analyzed. 展开更多
关键词 dynamic programming robot manipulators optimal control dynamic modelling method
下载PDF
Globally robust nonlinear PID controllers for robot manipulators with an uncertain Jacobian matrix 被引量:1
17
作者 ChunqingHUANG SongjiaoSHI 《控制理论与应用(英文版)》 EI 2004年第2期105-110,共6页
Based on a continuous piecewise-differentiable increasing functions vector, a class of robust nonlinear PID (RN-PID) controllers is proposed for setpoint control with uncertain Jacobian matrix. Globally asymptotic sta... Based on a continuous piecewise-differentiable increasing functions vector, a class of robust nonlinear PID (RN-PID) controllers is proposed for setpoint control with uncertain Jacobian matrix. Globally asymptotic stability is guaranteed and only position and joint velocity measurements are required. And stability problem arising from integral action and integrator windup, are consequently resolved. Furthermore, RN-PID controllers can be of effective alternative for anti-integrator-wind-up, the control performance would not be very bad in the presence of rough parameter tuning. 展开更多
关键词 Robot manipulator PID Globally robust nonlinear PID Uncertain Jacobian matrix Asymptotic stability
下载PDF
Novel integrated optimization algorithm for trajectory planning of robot manipulators based on integrated evolutionary programming 被引量:1
18
作者 XiongLUO XiaopingFAN HengZHANG TefangCHEN 《控制理论与应用(英文版)》 EI 2004年第4期319-331,共13页
Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main cat... Optimal trajectory planning for robot manipulators plays an important role in implementing the high productivity for robots. The performance indexes used in optimal trajectory planning are classified into two main categories: optimum traveling time and optimum mechanical energy of the actuators. The current trajectory planning algorithms are designed based on one of the above two performance indexes. So far, there have been few planning algorithms designed to satisfy two performance indexes simultaneously. On the other hand, some deficiencies arise in the existing integrated optimi2ation algorithms of trajectory planning. In order to overcome those deficiencies, the integrated optimization algorithms of trajectory planning are presented based on the complete analysis for trajectory planning of robot manipulators. In the algorithm, two object functions are designed based on the specific weight coefficient method and ' ideal point strategy. Moreover, based on the features of optimization problem, the intensified evolutionary programming is proposed to solve the corresponding optimization model. Especially, for the Stanford Robot,the high-quality solutions are found at a lower cost. 展开更多
关键词 Trajectory planning Integrated optimization Evolutionary programming Robot manipulator
下载PDF
Robust scheme of global parallel force/position regulators for robot manipulators under environment uncertainty 被引量:1
19
作者 Chunqing HUANG Lisang LIU +1 位作者 Xinggui WANG Songjiao SHI 《控制理论与应用(英文版)》 EI 2007年第3期271-277,共7页
A simple robust scheme of parallel force/position control is proposed in this paper to deal with two problems for non-planar constraint surface and nonlinear mechanical feature of environment: i) uncertainties in en... A simple robust scheme of parallel force/position control is proposed in this paper to deal with two problems for non-planar constraint surface and nonlinear mechanical feature of environment: i) uncertainties in environment that are usually not available or difficult to be determined in most practical situations; ii) stability problem or/and integrator windup due to the integration of force error in the force dominance rule in parallel force/position control. It shows that this robust scheme is a good alternative for anti-windup. In the presence of environment uncertainties, global asymptotic stability of the resulting closed-loop system is guaranteed; it environment with complex characteristics. Finally, numerical robot manipulator. also shows robustness of the proposed controller to uncertain simulation verifies results via contact task of a two rigid-links 展开更多
关键词 Robot manipulator Parallel force/position control Globally asymptotic stability Uncertain environment Anti-windup
下载PDF
Robust Iterative Learning Controller for the Non-zero Initial Error Problem on Robot Manipulator
20
作者 TAO Li-li 1,YANG Fu-wen 2 (1. Department of Automation, University of Xiamen, Xiamen 361005, Chi na 2. Department of Electrical Engineering, University of Fuzhou, Fuzhou 350002, C hina) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期-,共2页
Industrial robot system is a kind of dynamic system w ith strong nonlinear coupling and high position precision. A lot of control ways , such as nonlinear feedbackdecomposition motion and adaptive control and so o n, ... Industrial robot system is a kind of dynamic system w ith strong nonlinear coupling and high position precision. A lot of control ways , such as nonlinear feedbackdecomposition motion and adaptive control and so o n, have been used to control this kind of system, but there are some deficiencie s in those methods: some need accurate and some need complicated operation and e tc. In recent years, in need of controlling the industrial robots, aiming at com pletely tracking the ideal input for the controlled subject with repetitive character, a new research area, ILC (iterative learning control), has been devel oped in the control technology and theory. The iterative learning control method can make the controlled subject operate as desired in a definite time span, merely making use of the prior control experie nce of the system and searching for the desired control signal according to the practical and desired output signal. The process of searching is equal to that o f learning, during which we only need to measure the output signal to amend the control signal, not like the adaptive control strategy, which on line assesses t he complex parameters of the system. Besides, since the iterative learning contr ol relies little on the prior message of the subject, it has been well used in a lot of areas, especially the dynamic systems with strong non-linear coupling a nd high repetitive position precision and the control system with batch producti on. Since robot manipulator has the above-mentioned character, ILC can be very well used in robot manipulator. In the ILC, since the operation always begins with a certain initial state, init ial condition has been required in almost all convergence verification. Therefor e, in designing the controller, the initial state has to be restricted with some condition to guarantee the convergence of the algorithm. The settle of initial condition problem has long been pursued in the ILC. There are commonly two kinds of initial condition problems: one is zero initial error problem, another is non-zero initial error problem. In practice, the repe titive operation will invariably produce excursion of the iterative initial stat e from the desired initial state. As a result, the research on the second in itial problem has more practical meaning. In this paper, for the non-zero initial error problem, one novel robust ILC alg orithms, respectively combining PD type iterative learning control algorithm wit h the robust feedback control algorithm, has been presented. This novel robust ILC algorithm contain two parts: feedforward ILC algorithm and robust feedback algorithm, which can be used to restrain disturbance from param eter variation, mechanical nonlinearities and unmodeled dynamics and to achieve good performance as well. The feedforward ILC algorithm can be used to improve the tracking error and perf ormance of the system through iteratively learning from the previous operation, thus performing the tracking task very fast. The robust feedback algorithm could mainly be applied to make the real output of the system not deviate too much fr om the desired tracking trajectory, and guarantee the system’s robustness w hen there are exterior noises and variations of the system parameter. In this paper, in order to analyze the convergence of the algorithm, Lyapunov st ability theory has been used through properly selecting the Lyapunov function. T he result of the verification shows the feasibility of the novel robust iterativ e learning control in theory. Finally, aiming at the two-freedom rate robot, simulation has been made with th e MATLAB software. Furthermore, two groups of parameters are selected to validat e the robustness of the algorithm. 展开更多
关键词 robust control iterative learning control non- zero initial error robot manipulator
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部