State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modele...State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modeled dynamics,parameter sensitivity,etc.This paper discusses the principles and characteristics of three different approaches,extended Kalman filters,strong tracking filters and unscented transformation based Kalman filters.By introducing the unscented transformation method and a sub-optimal fading factor to correct the prediction error covariance,an improved Kalman filter,unscented transformation based robust Kalman filter,is proposed. The performance of the algorithm is compared with the strong tracking filter and unscented transformation based Kalman filter and illustrated in a typical case study for glutathione fermentation process.The results show that the proposed algorithm presents better accuracy and stability on the state estimation in numerical calculations.展开更多
A robust finite-horizon Kalman filter is designed for linear discrete-time systems subject to norm-bounded uncertainties in the modeling parameters and missing measurements.The missing measurements were described by a...A robust finite-horizon Kalman filter is designed for linear discrete-time systems subject to norm-bounded uncertainties in the modeling parameters and missing measurements.The missing measurements were described by a binary switching sequence satisfying a conditional probability distribution,the commonest cases in engineering,such that the expectation of the measurements could be utilized during the iteration process.To consider the uncertainties in the system model,an upperbound for the estimation error covariance was obtained since its real value was unaccessible.Our filter scheme is on the basis of minimizing the obtained upper bound where we refer to the deduction of a classic Kalman filter thus calculation of the derivatives are avoided.Simulations are presented to illustrate the effectiveness of the proposed approach.展开更多
In order to solve the problem of location privacy under big data and improve the user positioning experience,a new concept of anonymous crowdsourcing-based WLAN indoor localization is proposed by employing the Micro-E...In order to solve the problem of location privacy under big data and improve the user positioning experience,a new concept of anonymous crowdsourcing-based WLAN indoor localization is proposed by employing the Micro-Electro-Mechanical System(MEMS)motion sensors as well as WLAN module in off-the-shelf smartphones.First of all,the crowdsourced motion traces with similar Received Signal Strength(RSS)sequences are assembled into a motion graph.Second,the mobility map is constructed according to traces segmentation and clustering.Third,the pixel template matching is adopted to physically label the pre-constructed mobility map.Finally,the robust Extended Kalman Filter(EKF)is designed to perform localization by matching the newly-collected RSS measurements against the mobility map.The extensive experimental results show that the proposed approach is capable of constructing a physically-labeled mobility map from the sporadically-collected crowdsourced motion traces as well as achieving satisfactory localization accuracy in a cost-efficient manner.展开更多
In order to meet the requirements of high-precision vehicle positioning in complex scenes,an observation noise adaptive robust GNSS/MIMU tight fusion model based on the gain matrix is proposed considering static zero ...In order to meet the requirements of high-precision vehicle positioning in complex scenes,an observation noise adaptive robust GNSS/MIMU tight fusion model based on the gain matrix is proposed considering static zero speed,non-integrity,attitude,and odometer constraint models.In this model,the robust equivalent gain matrix is constructed by the IGG-Ⅲmethod to weaken the influence of gross error,and the on-line adaptive update of observation noise matrix is carried out according to the change of actual observation environment,so as to improve the solution performance of filtering system and realize high-precision position,attitude and velocity measurement when GNSS signal is unlocked.A real test on a road over 600 km demonstrates that,in about 100 km shaded environment,the fixed rate of GNSS ambiguity resolution in the shaded road is 10%higher than that of GNSS only ambiguity resolution.For all the test,the positioning accuracy can reach the centimeter level in an open environment,better than 0.6 m in the tree shaded environment,better than 1.5 m in the three-dimensional traffic environment,and can still maintain a positioning accuracy of 0.1 m within 10 s when the satellite is unlocked in the tunnel scene.The proposal and verification of the algorithm model show that low-cost MIMU equipment can still achieve high-precision positioning when there are scene feature constraints,which can meet the problem of high-precision vehicle navigation and location in the urban complex environment.展开更多
A control strategy based on LQG/LTR theory for steer-by-wire (SBW) system is proposed in this paper. Firstly, the models of the SBW system and the whole vehicle are constructed. econdly, the control strategy of LQG f...A control strategy based on LQG/LTR theory for steer-by-wire (SBW) system is proposed in this paper. Firstly, the models of the SBW system and the whole vehicle are constructed. econdly, the control strategy of LQG for SBW system is proposed, in which the LTR is utilized to eliminate the effect from the Kalman filter. Thirdly, simulations based on the co- simulation platform of MATLAB/Simulink and Carsim are performed with the proposed control strategy to identify its performance. At last, field experiments are conducted to further verify the feasibility of the proposed control strategy in real application. The simulation and experiment results indicate that the proposed control strategy has good stability, robustness and feasibility in real application, and is more effective in practical application of SBW system.展开更多
基金Supported by the National Natural Science Foundation of China (20476007, 20676013).
文摘State estimation is the precondition and foundation of a bioprocess monitoring and optimal control. However,there are many difficulties in dealing with a non-linear system,such as the instability of process, un-modeled dynamics,parameter sensitivity,etc.This paper discusses the principles and characteristics of three different approaches,extended Kalman filters,strong tracking filters and unscented transformation based Kalman filters.By introducing the unscented transformation method and a sub-optimal fading factor to correct the prediction error covariance,an improved Kalman filter,unscented transformation based robust Kalman filter,is proposed. The performance of the algorithm is compared with the strong tracking filter and unscented transformation based Kalman filter and illustrated in a typical case study for glutathione fermentation process.The results show that the proposed algorithm presents better accuracy and stability on the state estimation in numerical calculations.
基金Supported by the National Natural Science Foundation for Outstanding Youth(61422102)
文摘A robust finite-horizon Kalman filter is designed for linear discrete-time systems subject to norm-bounded uncertainties in the modeling parameters and missing measurements.The missing measurements were described by a binary switching sequence satisfying a conditional probability distribution,the commonest cases in engineering,such that the expectation of the measurements could be utilized during the iteration process.To consider the uncertainties in the system model,an upperbound for the estimation error covariance was obtained since its real value was unaccessible.Our filter scheme is on the basis of minimizing the obtained upper bound where we refer to the deduction of a classic Kalman filter thus calculation of the derivatives are avoided.Simulations are presented to illustrate the effectiveness of the proposed approach.
基金the National Natural Science Foundation of China(61771083,61704015)Program for Changjiang Scholars and Innovative Research Team in University(IRT1299)+2 种基金Special Fund of Chongqing Key Laboratory(CSTC),Fundamental and Frontier Research Project of Chongqing(cstc2017jcyjAX0380,cstc2015jcyjBX0065)University Outstanding Achievement Transformation Project of Chongqing(KJZH17117)Postgraduate Scientific Research and Innovation Project of Chongqing(CYS17221).
文摘In order to solve the problem of location privacy under big data and improve the user positioning experience,a new concept of anonymous crowdsourcing-based WLAN indoor localization is proposed by employing the Micro-Electro-Mechanical System(MEMS)motion sensors as well as WLAN module in off-the-shelf smartphones.First of all,the crowdsourced motion traces with similar Received Signal Strength(RSS)sequences are assembled into a motion graph.Second,the mobility map is constructed according to traces segmentation and clustering.Third,the pixel template matching is adopted to physically label the pre-constructed mobility map.Finally,the robust Extended Kalman Filter(EKF)is designed to perform localization by matching the newly-collected RSS measurements against the mobility map.The extensive experimental results show that the proposed approach is capable of constructing a physically-labeled mobility map from the sporadically-collected crowdsourced motion traces as well as achieving satisfactory localization accuracy in a cost-efficient manner.
基金Youth Program of National Natural Science Foundation of China (No. 41904029)Scientific Research Project of Beijing Educational Committee (No. KM202010016009)。
文摘In order to meet the requirements of high-precision vehicle positioning in complex scenes,an observation noise adaptive robust GNSS/MIMU tight fusion model based on the gain matrix is proposed considering static zero speed,non-integrity,attitude,and odometer constraint models.In this model,the robust equivalent gain matrix is constructed by the IGG-Ⅲmethod to weaken the influence of gross error,and the on-line adaptive update of observation noise matrix is carried out according to the change of actual observation environment,so as to improve the solution performance of filtering system and realize high-precision position,attitude and velocity measurement when GNSS signal is unlocked.A real test on a road over 600 km demonstrates that,in about 100 km shaded environment,the fixed rate of GNSS ambiguity resolution in the shaded road is 10%higher than that of GNSS only ambiguity resolution.For all the test,the positioning accuracy can reach the centimeter level in an open environment,better than 0.6 m in the tree shaded environment,better than 1.5 m in the three-dimensional traffic environment,and can still maintain a positioning accuracy of 0.1 m within 10 s when the satellite is unlocked in the tunnel scene.The proposal and verification of the algorithm model show that low-cost MIMU equipment can still achieve high-precision positioning when there are scene feature constraints,which can meet the problem of high-precision vehicle navigation and location in the urban complex environment.
基金supported by the National Natural Science Foundation of China (Grant No. 51375007)the Fundamental Research Funds for the Central Universities (Grant No. NE2016002)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems (Grant No.GZKF-201605)
文摘A control strategy based on LQG/LTR theory for steer-by-wire (SBW) system is proposed in this paper. Firstly, the models of the SBW system and the whole vehicle are constructed. econdly, the control strategy of LQG for SBW system is proposed, in which the LTR is utilized to eliminate the effect from the Kalman filter. Thirdly, simulations based on the co- simulation platform of MATLAB/Simulink and Carsim are performed with the proposed control strategy to identify its performance. At last, field experiments are conducted to further verify the feasibility of the proposed control strategy in real application. The simulation and experiment results indicate that the proposed control strategy has good stability, robustness and feasibility in real application, and is more effective in practical application of SBW system.