The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the ...The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.展开更多
A new modified extended state observer(MESO)-based robustness voltage sliding mode control(SMC)strategy is proposed for an AC islanded microgrid under system uncertainties including system parameter and load variation...A new modified extended state observer(MESO)-based robustness voltage sliding mode control(SMC)strategy is proposed for an AC islanded microgrid under system uncertainties including system parameter and load variation.First,the disturbance effect on the system is regarded as a lumped uncertainty,and a state space model of the uncertain islanded microgrid system is established.Then,a modified extended state observer is designed to estimate external disturbances and internal perturbation.Finally,considering the lumped uncertainty,a sliding mode controller with a multi-power reaching law is proposed to enable the output voltage of the system to track its reference voltage rapidly and accurately,and to enhance the robustness of the system.The simulation results confirm that the proposed robustness voltage control strategy can perform satisfactory voltage control and demonstrate a strong capability to reject parameter and load variation.展开更多
This paper introduces a CPS application for intelligent aeroplane assembly.At first,the CPS structure is presented,which acquires the characteristics of general CPS and enables“simulation-based planning and control”...This paper introduces a CPS application for intelligent aeroplane assembly.At first,the CPS structure is presented,which acquires the characteristics of general CPS and enables“simulation-based planning and control”to achieve high level intelligent assembly.Then the paper puts forward data fusion estimation algorithm under synchronous and asynchronous sampling,respectively.The experiment shows that global optimal distributed fusion estimation under synchronized sampling proves to be closer to the actual value compared with ordinary weighted estimation,and multi-scale distributed fusion estimation algorithm of wavelet under asynchronous sampling does not need time registration,it can also directly link to data,and the error is smaller.This paper presents hybrid control strategy under the circumstance of joint action of the inner and outer loop to address the problems caused by the less controllable feature of the parallel mechanism when undertaking online process simulation and control.A robust adaptive sliding mode controller is designed based on disturbance observer to restrain inner interference and maintain robustness.At the same time,an outer collaborative trajectory planning is also designed.All the experiment results show the feasibility of above proposed methods.展开更多
文摘The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.
文摘A new modified extended state observer(MESO)-based robustness voltage sliding mode control(SMC)strategy is proposed for an AC islanded microgrid under system uncertainties including system parameter and load variation.First,the disturbance effect on the system is regarded as a lumped uncertainty,and a state space model of the uncertain islanded microgrid system is established.Then,a modified extended state observer is designed to estimate external disturbances and internal perturbation.Finally,considering the lumped uncertainty,a sliding mode controller with a multi-power reaching law is proposed to enable the output voltage of the system to track its reference voltage rapidly and accurately,and to enhance the robustness of the system.The simulation results confirm that the proposed robustness voltage control strategy can perform satisfactory voltage control and demonstrate a strong capability to reject parameter and load variation.
基金The work was supported by the project:2013BAF02B00.
文摘This paper introduces a CPS application for intelligent aeroplane assembly.At first,the CPS structure is presented,which acquires the characteristics of general CPS and enables“simulation-based planning and control”to achieve high level intelligent assembly.Then the paper puts forward data fusion estimation algorithm under synchronous and asynchronous sampling,respectively.The experiment shows that global optimal distributed fusion estimation under synchronized sampling proves to be closer to the actual value compared with ordinary weighted estimation,and multi-scale distributed fusion estimation algorithm of wavelet under asynchronous sampling does not need time registration,it can also directly link to data,and the error is smaller.This paper presents hybrid control strategy under the circumstance of joint action of the inner and outer loop to address the problems caused by the less controllable feature of the parallel mechanism when undertaking online process simulation and control.A robust adaptive sliding mode controller is designed based on disturbance observer to restrain inner interference and maintain robustness.At the same time,an outer collaborative trajectory planning is also designed.All the experiment results show the feasibility of above proposed methods.