Investigating rock fragmentation mechanisms under blasting and developing new blasting technologies are important and challenging directions for blast engineering.Recently,with the development of experimental techniqu...Investigating rock fragmentation mechanisms under blasting and developing new blasting technologies are important and challenging directions for blast engineering.Recently,with the development of experimental techniques,the fundamental theory of rock blasting has been extensively studied in the past few decades and has made important achievements in the full understanding of the rock fracturing process under blast loading.It is thus imperative to systematically review the progress in this direction.This paper mainly focuses on the experimental study of rock blasting,including the distribution characteristic of blast energy,evolution of the blast stress field,propagation mechanism of cracks,interaction mechanism between blast waves and cracks,and influence of geostatic stress on rock fragmentation.In addition,some newly developed blasting technologies and their applications are briefly presented.This review could provide comprehensive insights to guide the study on the rock fracturing mechanism under blasting and further provide meaningful guidance for optimizing blast parameters in engineering.展开更多
An analytical relation between burden velocity and ratio of burden to blasthole diameter is developed in this paper.This relation is found to be consistent with the measured burden velocities of all 37 full-scale blas...An analytical relation between burden velocity and ratio of burden to blasthole diameter is developed in this paper.This relation is found to be consistent with the measured burden velocities of all 37 full-scale blasts found from published articles.These blasts include single-hole blasts,multi-hole blasts,and simultaneously-initiated blasts with various borehole diameters such as 64 mm,76 mm,92 mm,115 mm,142 mm and 310 mm.All boreholes were fully charged.The agreement between measured and calculated burden velocities demonstrates that this relation can be used to predict the burden velocity of a wide range of full-scale blast with fully-coupled explosive charge and help to determine a correct delay time between adjacent holes or rows in various full-scale blasts involved in tunnelling(or drifting),surface and underground mining production blasts and underground opening slot blasts.In addition,this theoretical relation is found to agree with the measured burden velocities of 9 laboratory small-scale blasts to a certain extent.To predict the burden velocity of a small-scale blast,a further study or modification to the relation is necessary by using more small-scale blasts in the future.展开更多
The shear wave(S-wave) component of the total blast vibration always plays an important role in damage to rock or adjacent structures.Numerical approach has been considered as an economical and effective tool in predi...The shear wave(S-wave) component of the total blast vibration always plays an important role in damage to rock or adjacent structures.Numerical approach has been considered as an economical and effective tool in predicting blast vibration.However,S-wave has not yet attracted enough attention in previous numerical simulations.In this paper,three typical numerical models,i.e.the continuum-based elastic model,the continuum-based damage model,and the coupled smooth particle hydrodynamics(SPH)-finite element method(FEM) model,were first introduced and developed to simulate the blasting of a single cylindrical charge.Then,the numerical results from different models were evaluated based on a review on the generation mechanisms of S-wave during blasting.Finally,some suggestions on the selection of numerical approaches for simulating generation of the blast-induced S-wave were put forward.Results indicate that different numerical models produce different results of S-wave.The coupled numerical model was the best,for its outstanding capacity in producing S-wave component.It is suggested that the model that can describe the cracking,sliding or heaving of rock mass,and the movement of fragments near the borehole should be selected preferentially,and priority should be given to the material constitutive law that could record the nonlinear mechanical behavior of rock mass near the borehole.展开更多
With rampant growth and improvements in drilling technology, drilling of blast holes should no longer be viewed as an arduous sub-process in any mining or excavation process. Instead, it must be viewed as an important...With rampant growth and improvements in drilling technology, drilling of blast holes should no longer be viewed as an arduous sub-process in any mining or excavation process. Instead, it must be viewed as an important opportunity to quickly and accurately measure the geo-mechanical features of the rock mass on-site, much in advance of the downstream operations. It is well established that even the slightest variation in lithology, ground conditions, blast designs vis-a-vis geologic features and explosives performance, results in drastic changes in fragmentation results. Keeping in mind the importance of state-of-the-art measurement-while-drilling (MWD) technique, the current paper focuses on integrating this technique with the blasting operation in order to enhance the blasting designs and results. The paper presents a preliminary understanding of various blasting models, blastability and other related concepts, to review the state-of-the-art advancements and researches done in this area. In light of this, the paper highlights the future needs and implications on drill monitoring systems for improved information to enhnnrp th~ hl^tin~ r^HIt~展开更多
A plasma discharge initiation system for the explosive volumetric combustion charge was designed, investigated and developed for practical application. Laboratory scale experiments were carried out before conducting t...A plasma discharge initiation system for the explosive volumetric combustion charge was designed, investigated and developed for practical application. Laboratory scale experiments were carried out before conducting the large scale field tests. The resultant explosions gave rise to less noise, insignificant seismic vibrations and good specific explosive consumption for rock blasting. Importantly, the technique was found to be safe and environmentally friendly.展开更多
Blasting has been widely used in mining and construction industries for rock breaking.This paper presents the results of a series of field tests conducted to investigate the ground wave propagation through mixed geolo...Blasting has been widely used in mining and construction industries for rock breaking.This paper presents the results of a series of field tests conducted to investigate the ground wave propagation through mixed geological media.The tests were conducted at a site in the northwestern part of Singapore composed of residual soil and granitic rock.The field test aims to provide measurement data to better understand the stress wave propagation in soil/rock and along their interface.Triaxial accelerometers were used for the free field vibration monitoring.The measured results are presented and discussed,and empirical formulae for predicting peak particle velocity (PPV) attenuation along the ground surface and in soil/rock were derived from the measured data.Also,the ground vibration attenuation across the soil-rock interface was carefully examined,and it was found that the PPV of ground vibration was decreased by 37.2% when it travels from rock to soil in the vertical direction.展开更多
The paper proposes a new empirical correlation designed to complement the‘‘site laws"currently used to evaluate the attenuation in the rock masses of vibrations induced by rock blasting.The formula contains a d...The paper proposes a new empirical correlation designed to complement the‘‘site laws"currently used to evaluate the attenuation in the rock masses of vibrations induced by rock blasting.The formula contains a deformed exponential known as the K-exponential,which seems to well represent a large number of both natural and artificial phenomena ranging from astrophysics to quantum mechanics,with some extension in the field of economics and finance.Experimental validation of the formula was performed via the analysis of vibration data covering a number of case studies,which differed in terms of both operation and rock type.A total of 12 experimental cases were analysed and the proposed formulation exhibited a good performance in 11 of them.In particular,the proposed law,which was built using blast test data,produced very good approximations of the points representing the vibration measurements and would thus be useful in organising production blasts.However,the developed formula was found to work less well when a correlation obtained for a given site was applied to another presenting similar types of rocks and operations,and thus should not be employed in the absence of measurements from test data.展开更多
With the application of electronic detonators, millisecond blasting is regarded as a signifi cant promising approach to improve the rock fragmentation in deep rock blasting. Thus, it is necessary to investigate the fr...With the application of electronic detonators, millisecond blasting is regarded as a signifi cant promising approach to improve the rock fragmentation in deep rock blasting. Thus, it is necessary to investigate the fracturing mechanisms of short-delay blasting. In this work, a rectangle model with two circle boreholes is modeled as a particles assembly based on the discrete element method to simulate the shock wave interactions induced by millisecond blasting. The rectangle model has a size of 12 × 6 m (L × W) and two blast holes have the same diameter of 12 cm. The shock waves are simplifi ed as time-varying forces applied at the particles of walls of the two boreholes. Among a series of numerical tests in this study, the spacing between two adjacent boreholes and delay time of millisecond blasting are considered as two primary variables, and the decoupling charge with a coeffi cient of 1.5 is taken into account in each case. The results show that stress superposition is not a key factor for improving rock fragmentation (tensile stress interactions rather than compressive stress superposition could aff ect the generation of cracks), whereas collision actions from isolated particles or particles with weakened constraints play a crucial role in creating the fracture network. The delay time has an infl uence on causing cracks in rock blasting, however, whether it works heavily depends on the distance between the two holes.展开更多
Fracture and ground vibration of rock subjected to different decoupling decked charges are investigated based on the numerical simulation. The dynamic pressure value is studied, which demonstrates that simulation of f...Fracture and ground vibration of rock subjected to different decoupling decked charges are investigated based on the numerical simulation. The dynamic pressure value is studied, which demonstrates that simulation of fracture zone is feasible. Attenuation index of dynamic pressure is 2.06, 2.05 and 1.93 for air, water and sand intervals respectively. The small attenuation of sand in- terval results in the large ground vibration. The predicted vertical vibration waveform and peak parti- cle velocities (PPV) in far-field are in agreement with the monitoring results. The results show that the air and water decked charges can improve the effect of rock fracture in near-field and reduce ground vibration in far-field.展开更多
Blasting operation dissipates much of the blasting energy in crushing the rock at the borehole and the resulting cracks are randomly oriented. There is very little control of the fracture plane. In order to control th...Blasting operation dissipates much of the blasting energy in crushing the rock at the borehole and the resulting cracks are randomly oriented. There is very little control of the fracture plane. In order to control the fracture plane, many methods have been applied. This paper discusses a new blasting method in which a high degree of fracture control can be achieved while minimizing the ground shock.展开更多
According to the structure of explosive charge in rock blasting, a physical model has been set up in this paper. Based on the model, a methodology for calculating initial shock wave of uncoupling charge has been given...According to the structure of explosive charge in rock blasting, a physical model has been set up in this paper. Based on the model, a methodology for calculating initial shock wave of uncoupling charge has been given. The pressure p3 has been calculated when high explosives act on granite, limestone, marble and shaIe respectively. Some important conclusions are also gained by the analysis of results.展开更多
a damage constitutive model comprising two dynamite sticks is established and handled with the transient dynamics finite element computer program PRONTO-3D to study rock damage and fragmentation during blasting. Simul...a damage constitutive model comprising two dynamite sticks is established and handled with the transient dynamics finite element computer program PRONTO-3D to study rock damage and fragmentation during blasting. Simulation tests find that tensile stress by detonation gives rise to tensile bulk strain and consequently damage in the material. Maximum bulk strain is observed in simultaneous detonations of the two dynamite sticks. It is demonstrated that the proposed method is applicable to studying the process of rock damage by blasting as well as its affecting factors.展开更多
Studied forecasting and controlling the blasting fragmentation by using artifi- cial neural network for multi-ingredients. At the same time, according to the characteris- tic of multi-parameters input to network model...Studied forecasting and controlling the blasting fragmentation by using artifi- cial neural network for multi-ingredients. At the same time, according to the characteris- tic of multi-parameters input to network model, the gray correlation theory was employed to find out key factors, which can not only save time of computation and parameters in- put, but improve the stability of the model.展开更多
A precondition for correctly analyzing the stability of a slope and designing its bracing structure is to study and determine the influence of excavation blasting on the properties of weak intercalation in the layered...A precondition for correctly analyzing the stability of a slope and designing its bracing structure is to study and determine the influence of excavation blasting on the properties of weak intercalation in the layered rock slope. On the basis of in-situ stratification-cracking blasting tests, the properties of weak intercalation were investigated using the LS-DYNA3D program. The displacement distribution and compactness of weak intercalation at different positions away from the charge center and their various laws are discussed. The critical displacement of stratification-cracking (0.1 mm) was obtained, and an approximate expression of compactness were deduced. Furthermore, through the simulation of a layered rock blasting under the same geological conditions, the stratification-cracking effect of deep-hole blasting on the properties of weak intercalation was compared with that of short-hole blasting, and the influencing differences, in addition to their causes, were analyzed. The results indicated that the blasting cavity of weak intercalation in short-hole blasting with a radius of 40 mm was nearly a circle, whose radius was about 28.7 cm; whereas in deep-hole blasting with a radius of 150 mm, the shape of the blasting cavity was different from that in short-hole blasting, the radius of the cavity behind the charge (89.1 cm) was further smaller than those of the other three (138.7 cm), and there were sharp crinkles on the surface of weak intercalation. When the distance from the charge center (DCC) was less than 40 and 150 cm in short-hole and deep-hole blasting, respectively, the displacement of weak intercalation was reduced remarkably with the increase in DCC.展开更多
The blasting operation plays a pivotal role in the overall economics of opencast mines.The blasting subsystem affects all the other associated sub-systems,i.e.loading,transport,crushing and milling operations.Fragment...The blasting operation plays a pivotal role in the overall economics of opencast mines.The blasting subsystem affects all the other associated sub-systems,i.e.loading,transport,crushing and milling operations.Fragmentation control through effective blast design and its effect on productivity are the challenging tasks for practicing blasting engineer due to inadequate knowledge of actual explosive energy released in the borehole,varying initiation practice in blast design and its effect on explosive energy release characteristic.This paper describes the result of a systematic study on the impact of blast design parameters on rock fragmentation at three mines in India.The mines use draglines and shoveledumper combination for removal of overburden.Despite its pivotal role in controlling the overall economics of a mining operation,the expected blasting performance is often judged almost exclusively on the basis of poorly defined parameters such as powder factor and is often qualitative which results in very subjective assessment of blasting performance.Such an approach is very poor substitutes for accurate assessment of explosive and blasting performance.Ninety one blasts were conducted with varying blast designs and charging patterns,and their impacts on the rock fragmentation were documented.A high-speed camera was deployed to record the detonation sequences of the blasts.The efficiency of the loading machines was also correlated with the mean fragment size obtained from the fragmentation analyses.展开更多
The blasting experiment of the cement mortar model reveals that joint inclination affects blasted rock size distribution, which is an important index to evaluate the blasting effect. According to the fractal theory, t...The blasting experiment of the cement mortar model reveals that joint inclination affects blasted rock size distribution, which is an important index to evaluate the blasting effect. According to the fractal theory, the relationship is built up between fractal dimension and mass fraction of blasted fragments screened, that is, y x=100(x/x m ) 3-D . On the basis of the experiment results, the fractal dimension describing fragment size distribution is calculated.展开更多
The effect of blasting vibration waves on surrounding rock and supporting structures is an important field in underground engineering. In this paper, the separation variable method is used to solve the displacement po...The effect of blasting vibration waves on surrounding rock and supporting structures is an important field in underground engineering. In this paper, the separation variable method is used to solve the displacement potential function for the propagation of the blasting vibration waves. In the axis coordinate system, the particle motion and stress change with axial distance, radial distance and time is obtained in surrounding rock. The peak particle velocity law in surrounding rock under different blast loads and surrounding rock parameters is discussed.In addition, the particle vibration characteristics in the surrounding rock are studied using numerical simulations method. The results shows that the peak particle velocity in surrounding rock appears negative exponent attenuation with the increase of axial distance, but it appears positive and negative fluctuations in radial direction. This phenomenon is a new discovery and it has been rarely investigated before. Moreover, the peak particle velocity attenuates more quickly and intensely in the near blasting field,which means that the supporting structure in a shorter distance away from the heading face is vulnerable to the impact of blasting vibration. Theattenuation of blasting vibration velocity is closely related to charge length, blasting load amplitude,attenuation index and rock elastic modulus. The numerical simulation accomplishes the same results and then demonstrates the validity of theoretical results.展开更多
Factors that affect blasting results may be grouped into those factors that can be controlled and those that cannot be controlled. The controllable factors include explosive properties, initiation timing, and blast ge...Factors that affect blasting results may be grouped into those factors that can be controlled and those that cannot be controlled. The controllable factors include explosive properties, initiation timing, and blast geometry. The uncontrollable factors comprise the rock’s natural structures, such as joints and fractures, and the properties, such as elastic constants, density and strength. Among these, the influence of rock structural planes often contributes a high degree of variability to blasting results. This paper presents a theoretical analysis of rock structural plane influences on smooth blasting results based on elasticity and stress wave propagation theory with an emphasis on smooth blasting techniques. Two types of simulated experiments in lab (using strain and acoustic emission measurements) are used to verify the theoretical analysis. The results show that it is difficult to achieve smooth blasting results when the angle between the natural rock structural planes and the blast induced fracture planes ranges from 10° to 60°. Among these angles, 30° is the least desirable angle to produce a smooth wall. For angles less than 10° and greater than 60°, the influence of rock structural planes on blasting results can be ignored.展开更多
The size distribution of fragmented rocks depends on not only the blasting standard but also the mechanical properties, joint system and crack density of rock mass. As, especially, the cracks in the rock mass are heav...The size distribution of fragmented rocks depends on not only the blasting standard but also the mechanical properties, joint system and crack density of rock mass. As, especially, the cracks in the rock mass are heavily developed at the limestone quarries in Japan, the joints and/or cracks in the rock mass have big impacts on the blasting effects such as the size of fragmented rocks. Therefore, if the joint system and/or crack density in the rock mass can be known and evaluated in quantity, the blasting operation can be done more effectively, efficiency and safety. However, the guideline for designing the appropriate blasting standard based on the rock mass condition such as mechanical properties, joint system and/or distribution of cracks, discontinuities, from the scientific point of view, has not been developed yet. Therefore, a series of blasting tests had been conducted in different mines and faces, geological conditions and blasting standards in order to know the impacts of each factor on the blasting effects. This paper summarizes the results of blasting tests and describes the impacts of rock mass conditions and blasting standard on the size of fragmented rocks.展开更多
文摘Investigating rock fragmentation mechanisms under blasting and developing new blasting technologies are important and challenging directions for blast engineering.Recently,with the development of experimental techniques,the fundamental theory of rock blasting has been extensively studied in the past few decades and has made important achievements in the full understanding of the rock fracturing process under blast loading.It is thus imperative to systematically review the progress in this direction.This paper mainly focuses on the experimental study of rock blasting,including the distribution characteristic of blast energy,evolution of the blast stress field,propagation mechanism of cracks,interaction mechanism between blast waves and cracks,and influence of geostatic stress on rock fragmentation.In addition,some newly developed blasting technologies and their applications are briefly presented.This review could provide comprehensive insights to guide the study on the rock fracturing mechanism under blasting and further provide meaningful guidance for optimizing blast parameters in engineering.
文摘An analytical relation between burden velocity and ratio of burden to blasthole diameter is developed in this paper.This relation is found to be consistent with the measured burden velocities of all 37 full-scale blasts found from published articles.These blasts include single-hole blasts,multi-hole blasts,and simultaneously-initiated blasts with various borehole diameters such as 64 mm,76 mm,92 mm,115 mm,142 mm and 310 mm.All boreholes were fully charged.The agreement between measured and calculated burden velocities demonstrates that this relation can be used to predict the burden velocity of a wide range of full-scale blast with fully-coupled explosive charge and help to determine a correct delay time between adjacent holes or rows in various full-scale blasts involved in tunnelling(or drifting),surface and underground mining production blasts and underground opening slot blasts.In addition,this theoretical relation is found to agree with the measured burden velocities of 9 laboratory small-scale blasts to a certain extent.To predict the burden velocity of a small-scale blast,a further study or modification to the relation is necessary by using more small-scale blasts in the future.
基金supported by the National Key Basic Research Program of China(973 Program)(Grant No.2011CB013501)the National Science Fund for Distinguished Young Scholars of China(Grant No.51125037)
文摘The shear wave(S-wave) component of the total blast vibration always plays an important role in damage to rock or adjacent structures.Numerical approach has been considered as an economical and effective tool in predicting blast vibration.However,S-wave has not yet attracted enough attention in previous numerical simulations.In this paper,three typical numerical models,i.e.the continuum-based elastic model,the continuum-based damage model,and the coupled smooth particle hydrodynamics(SPH)-finite element method(FEM) model,were first introduced and developed to simulate the blasting of a single cylindrical charge.Then,the numerical results from different models were evaluated based on a review on the generation mechanisms of S-wave during blasting.Finally,some suggestions on the selection of numerical approaches for simulating generation of the blast-induced S-wave were put forward.Results indicate that different numerical models produce different results of S-wave.The coupled numerical model was the best,for its outstanding capacity in producing S-wave component.It is suggested that the model that can describe the cracking,sliding or heaving of rock mass,and the movement of fragments near the borehole should be selected preferentially,and priority should be given to the material constitutive law that could record the nonlinear mechanical behavior of rock mass near the borehole.
文摘With rampant growth and improvements in drilling technology, drilling of blast holes should no longer be viewed as an arduous sub-process in any mining or excavation process. Instead, it must be viewed as an important opportunity to quickly and accurately measure the geo-mechanical features of the rock mass on-site, much in advance of the downstream operations. It is well established that even the slightest variation in lithology, ground conditions, blast designs vis-a-vis geologic features and explosives performance, results in drastic changes in fragmentation results. Keeping in mind the importance of state-of-the-art measurement-while-drilling (MWD) technique, the current paper focuses on integrating this technique with the blasting operation in order to enhance the blasting designs and results. The paper presents a preliminary understanding of various blasting models, blastability and other related concepts, to review the state-of-the-art advancements and researches done in this area. In light of this, the paper highlights the future needs and implications on drill monitoring systems for improved information to enhnnrp th~ hl^tin~ r^HIt~
文摘A plasma discharge initiation system for the explosive volumetric combustion charge was designed, investigated and developed for practical application. Laboratory scale experiments were carried out before conducting the large scale field tests. The resultant explosions gave rise to less noise, insignificant seismic vibrations and good specific explosive consumption for rock blasting. Importantly, the technique was found to be safe and environmentally friendly.
基金supported by the Land and Liveability National Innovation Challenge under L2 NIC Award No. L2NICCFP1-2013-1
文摘Blasting has been widely used in mining and construction industries for rock breaking.This paper presents the results of a series of field tests conducted to investigate the ground wave propagation through mixed geological media.The tests were conducted at a site in the northwestern part of Singapore composed of residual soil and granitic rock.The field test aims to provide measurement data to better understand the stress wave propagation in soil/rock and along their interface.Triaxial accelerometers were used for the free field vibration monitoring.The measured results are presented and discussed,and empirical formulae for predicting peak particle velocity (PPV) attenuation along the ground surface and in soil/rock were derived from the measured data.Also,the ground vibration attenuation across the soil-rock interface was carefully examined,and it was found that the PPV of ground vibration was decreased by 37.2% when it travels from rock to soil in the vertical direction.
文摘The paper proposes a new empirical correlation designed to complement the‘‘site laws"currently used to evaluate the attenuation in the rock masses of vibrations induced by rock blasting.The formula contains a deformed exponential known as the K-exponential,which seems to well represent a large number of both natural and artificial phenomena ranging from astrophysics to quantum mechanics,with some extension in the field of economics and finance.Experimental validation of the formula was performed via the analysis of vibration data covering a number of case studies,which differed in terms of both operation and rock type.A total of 12 experimental cases were analysed and the proposed formulation exhibited a good performance in 11 of them.In particular,the proposed law,which was built using blast test data,produced very good approximations of the points representing the vibration measurements and would thus be useful in organising production blasts.However,the developed formula was found to work less well when a correlation obtained for a given site was applied to another presenting similar types of rocks and operations,and thus should not be employed in the absence of measurements from test data.
基金National Science Foundation for Young Scientists of China under Grant No.51709176National Natural Science Foundation of China under Grant No.51979170+2 种基金Key Project of Hebei Natural Science Foundation under Grant No.F2019210243Hebei Province Science Foundation for Young Scientists under Grant No.E2018210046Open Project of State Key Laboratory of Advanced Electromagnetic Engineering and Technology under Grant No.AEET 2019KF005
文摘With the application of electronic detonators, millisecond blasting is regarded as a signifi cant promising approach to improve the rock fragmentation in deep rock blasting. Thus, it is necessary to investigate the fracturing mechanisms of short-delay blasting. In this work, a rectangle model with two circle boreholes is modeled as a particles assembly based on the discrete element method to simulate the shock wave interactions induced by millisecond blasting. The rectangle model has a size of 12 × 6 m (L × W) and two blast holes have the same diameter of 12 cm. The shock waves are simplifi ed as time-varying forces applied at the particles of walls of the two boreholes. Among a series of numerical tests in this study, the spacing between two adjacent boreholes and delay time of millisecond blasting are considered as two primary variables, and the decoupling charge with a coeffi cient of 1.5 is taken into account in each case. The results show that stress superposition is not a key factor for improving rock fragmentation (tensile stress interactions rather than compressive stress superposition could aff ect the generation of cracks), whereas collision actions from isolated particles or particles with weakened constraints play a crucial role in creating the fracture network. The delay time has an infl uence on causing cracks in rock blasting, however, whether it works heavily depends on the distance between the two holes.
文摘Fracture and ground vibration of rock subjected to different decoupling decked charges are investigated based on the numerical simulation. The dynamic pressure value is studied, which demonstrates that simulation of fracture zone is feasible. Attenuation index of dynamic pressure is 2.06, 2.05 and 1.93 for air, water and sand intervals respectively. The small attenuation of sand in- terval results in the large ground vibration. The predicted vertical vibration waveform and peak parti- cle velocities (PPV) in far-field are in agreement with the monitoring results. The results show that the air and water decked charges can improve the effect of rock fracture in near-field and reduce ground vibration in far-field.
文摘Blasting operation dissipates much of the blasting energy in crushing the rock at the borehole and the resulting cracks are randomly oriented. There is very little control of the fracture plane. In order to control the fracture plane, many methods have been applied. This paper discusses a new blasting method in which a high degree of fracture control can be achieved while minimizing the ground shock.
文摘According to the structure of explosive charge in rock blasting, a physical model has been set up in this paper. Based on the model, a methodology for calculating initial shock wave of uncoupling charge has been given. The pressure p3 has been calculated when high explosives act on granite, limestone, marble and shaIe respectively. Some important conclusions are also gained by the analysis of results.
基金Chongqing Yudong Freeway Engineering Co.Ltd. (SJ-43-0106191)Chongqing Traffic Committee ([2002]23-3#) and Henan Province Preeminent Youth Foundation (0310053100).
文摘a damage constitutive model comprising two dynamite sticks is established and handled with the transient dynamics finite element computer program PRONTO-3D to study rock damage and fragmentation during blasting. Simulation tests find that tensile stress by detonation gives rise to tensile bulk strain and consequently damage in the material. Maximum bulk strain is observed in simultaneous detonations of the two dynamite sticks. It is demonstrated that the proposed method is applicable to studying the process of rock damage by blasting as well as its affecting factors.
文摘Studied forecasting and controlling the blasting fragmentation by using artifi- cial neural network for multi-ingredients. At the same time, according to the characteris- tic of multi-parameters input to network model, the gray correlation theory was employed to find out key factors, which can not only save time of computation and parameters in- put, but improve the stability of the model.
基金supported by the National Natural Science Foundation of China (No.50574076 and No.50838006)
文摘A precondition for correctly analyzing the stability of a slope and designing its bracing structure is to study and determine the influence of excavation blasting on the properties of weak intercalation in the layered rock slope. On the basis of in-situ stratification-cracking blasting tests, the properties of weak intercalation were investigated using the LS-DYNA3D program. The displacement distribution and compactness of weak intercalation at different positions away from the charge center and their various laws are discussed. The critical displacement of stratification-cracking (0.1 mm) was obtained, and an approximate expression of compactness were deduced. Furthermore, through the simulation of a layered rock blasting under the same geological conditions, the stratification-cracking effect of deep-hole blasting on the properties of weak intercalation was compared with that of short-hole blasting, and the influencing differences, in addition to their causes, were analyzed. The results indicated that the blasting cavity of weak intercalation in short-hole blasting with a radius of 40 mm was nearly a circle, whose radius was about 28.7 cm; whereas in deep-hole blasting with a radius of 150 mm, the shape of the blasting cavity was different from that in short-hole blasting, the radius of the cavity behind the charge (89.1 cm) was further smaller than those of the other three (138.7 cm), and there were sharp crinkles on the surface of weak intercalation. When the distance from the charge center (DCC) was less than 40 and 150 cm in short-hole and deep-hole blasting, respectively, the displacement of weak intercalation was reduced remarkably with the increase in DCC.
基金The financial support from Coal S&T grant of Ministry of Coal,Government of India
文摘The blasting operation plays a pivotal role in the overall economics of opencast mines.The blasting subsystem affects all the other associated sub-systems,i.e.loading,transport,crushing and milling operations.Fragmentation control through effective blast design and its effect on productivity are the challenging tasks for practicing blasting engineer due to inadequate knowledge of actual explosive energy released in the borehole,varying initiation practice in blast design and its effect on explosive energy release characteristic.This paper describes the result of a systematic study on the impact of blast design parameters on rock fragmentation at three mines in India.The mines use draglines and shoveledumper combination for removal of overburden.Despite its pivotal role in controlling the overall economics of a mining operation,the expected blasting performance is often judged almost exclusively on the basis of poorly defined parameters such as powder factor and is often qualitative which results in very subjective assessment of blasting performance.Such an approach is very poor substitutes for accurate assessment of explosive and blasting performance.Ninety one blasts were conducted with varying blast designs and charging patterns,and their impacts on the rock fragmentation were documented.A high-speed camera was deployed to record the detonation sequences of the blasts.The efficiency of the loading machines was also correlated with the mean fragment size obtained from the fragmentation analyses.
文摘The blasting experiment of the cement mortar model reveals that joint inclination affects blasted rock size distribution, which is an important index to evaluate the blasting effect. According to the fractal theory, the relationship is built up between fractal dimension and mass fraction of blasted fragments screened, that is, y x=100(x/x m ) 3-D . On the basis of the experiment results, the fractal dimension describing fragment size distribution is calculated.
基金supported by the National Nature Science Foundation of China(11672112)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20113718110002)+1 种基金the Fund of the State KeyLaboratory of Disaster Prevention&Mitigation of Explosion&Impact(PLA University and Technology)(DPMEIKF201307)Huaqiao University Research Foundation(13BS402)
文摘The effect of blasting vibration waves on surrounding rock and supporting structures is an important field in underground engineering. In this paper, the separation variable method is used to solve the displacement potential function for the propagation of the blasting vibration waves. In the axis coordinate system, the particle motion and stress change with axial distance, radial distance and time is obtained in surrounding rock. The peak particle velocity law in surrounding rock under different blast loads and surrounding rock parameters is discussed.In addition, the particle vibration characteristics in the surrounding rock are studied using numerical simulations method. The results shows that the peak particle velocity in surrounding rock appears negative exponent attenuation with the increase of axial distance, but it appears positive and negative fluctuations in radial direction. This phenomenon is a new discovery and it has been rarely investigated before. Moreover, the peak particle velocity attenuates more quickly and intensely in the near blasting field,which means that the supporting structure in a shorter distance away from the heading face is vulnerable to the impact of blasting vibration. Theattenuation of blasting vibration velocity is closely related to charge length, blasting load amplitude,attenuation index and rock elastic modulus. The numerical simulation accomplishes the same results and then demonstrates the validity of theoretical results.
文摘Factors that affect blasting results may be grouped into those factors that can be controlled and those that cannot be controlled. The controllable factors include explosive properties, initiation timing, and blast geometry. The uncontrollable factors comprise the rock’s natural structures, such as joints and fractures, and the properties, such as elastic constants, density and strength. Among these, the influence of rock structural planes often contributes a high degree of variability to blasting results. This paper presents a theoretical analysis of rock structural plane influences on smooth blasting results based on elasticity and stress wave propagation theory with an emphasis on smooth blasting techniques. Two types of simulated experiments in lab (using strain and acoustic emission measurements) are used to verify the theoretical analysis. The results show that it is difficult to achieve smooth blasting results when the angle between the natural rock structural planes and the blast induced fracture planes ranges from 10° to 60°. Among these angles, 30° is the least desirable angle to produce a smooth wall. For angles less than 10° and greater than 60°, the influence of rock structural planes on blasting results can be ignored.
文摘The size distribution of fragmented rocks depends on not only the blasting standard but also the mechanical properties, joint system and crack density of rock mass. As, especially, the cracks in the rock mass are heavily developed at the limestone quarries in Japan, the joints and/or cracks in the rock mass have big impacts on the blasting effects such as the size of fragmented rocks. Therefore, if the joint system and/or crack density in the rock mass can be known and evaluated in quantity, the blasting operation can be done more effectively, efficiency and safety. However, the guideline for designing the appropriate blasting standard based on the rock mass condition such as mechanical properties, joint system and/or distribution of cracks, discontinuities, from the scientific point of view, has not been developed yet. Therefore, a series of blasting tests had been conducted in different mines and faces, geological conditions and blasting standards in order to know the impacts of each factor on the blasting effects. This paper summarizes the results of blasting tests and describes the impacts of rock mass conditions and blasting standard on the size of fragmented rocks.